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1 Basic General Concept Connected with Fourier

Series

1.1 Orthogonal Systems of Functions

a. Expansion of a vector in a vector space. During this course of
analysis we have mentioned several times that certain classes of functions
form vector spaces in relation to the standard arithmetic operations. Such,
for example, are the basic classes of analysis, which consist of smooth, con-
tinuous, or integrable real, complex, or vector-valued functions on a domain
X ⊂ R

n.
In analysis, as a rule, it is necessary to consider ”infinite linear combina-

tions” - series of functions of the form

f =

∞∑

k=1

αkfk

The definition of the sum of the series requires that some topology ( in
particular, a metric) be defined in the vector space in question, making it
possible to judge whether the difference f − Sn tends to zero or not, where
Sn =

∑n

k=1
αkfk.

The main device used in classical analysis to introduce a metric on a
vector space is to define some norm of a vector or inner product of vectors
in that space. We are now going to consider only spaces endowed with an
inner product (which, as before, we shall denote 〈, 〉)
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Definition 1.1. The vectors x and y in a vector space endowed with
an inner product 〈, 〉 are orthogonal (with respect to that inner product)
if 〈x, y〉 = 0.

Definition 1.2. The system of vectors {xk : k ∈ K} is orthogonal if the
vectors in it corresponding to different values of the index k are pairwise
orthogonal.

Definition 1.3. The system of vectors {ek : k ∈ K} is orthonormalized (or
orthonormal) if 〈ei, ej〉 = δij for every pair of indices i, j ∈ K, where δi,j is
the Kronecker symbol, that is

δi,j =

{
1, if i = j

0, if i 6= j

.

Definition 1.4. A finite system of vectors x1, x2, · · · , xn is linearly inde-
pendent if the equality α1x1 + α2x2 + · · ·+ αnxn = 0 is possible only when
α1 = α2 = · · · = αn = 0.

The main question that will interest us now is the question of expanding
a vector in a given system of linearly independent vectors.

As is known from analytic geometry, expansions in orthogonal and or-
thonormal systems have many technical advantages over expansions in arbi-
trary linearly independent systems. In the orthogonal expansion, the coeffi-
cients of the expansion are easy to compute, it is easy to compute the inner
product of two vectors from their coefficients in an orthogonal basis, and so
on.

1.2 Examples of Orthogonal Systems of Functions

The inner product is defined as

〈f, g〉 =
∫

X

f · g(x) dx (1)

on the vector space R2(X,C) consisting of functions on the set X ⊂ Rn that
are locally square-integrable.

Since |f · g| ≤ 1

2

(
|f |2 + |g|2

)
, the integral 1 converges and hence defines

〈f, g〉 unambiguously.
If we discussing real-valued functions, relations 1 is the real spaceR2(x,R)

reduces to the equality

〈f, g〉 =
∫

X

(f · g) (x) dx. (2)
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Examples 1. We recall for integers m and n

∫ π

−π

eimx · e−inx dx =

{
0, if m 6= n,

2π, if m = n
(3)

∫ π

−π

cosmx cos nx dx =





0, if m 6= n

π, if m = n 6= 0
2π, if m = n = 0

(4)

∫ π

−π

sinmx cos nx dx = 0 (5)

∫ π

−π

sinmx sinnx dx =





0, if m 6= n

π, if m = n 6= 0
0, if m = n = 0

(6)

These relations show that
{
einx;n ∈ Z

}
is an orthogonal system of vectors

in the space R2 ([−π, π];C) relative to the inner product 1. The trigono-

metric system {1, cosnx, sin nx;n ∈ N} is orthogonal in R2 ([−π, π];R).
If we allow linear combinations, then by Euler’s formulas einx = cosnx +

i sin nx, cosnx =
1

2

(
einx + e−inx

)
, sinnx =

1

2i

(
e−inx − e−inx

)
. We see that

these two systems can be expressed linearly in terms of each other, that
is, they are algebraically equivalent. For that reason the exponential sys-
tem

{
einx;n ∈ Z

}
is called the trigonometric system or more precisely the

trigonometric system in complex notation.
If the closed interval [−π, π] is replaced by an arbitrary closed interval

[−l, l] ⊂ R, then by a change of variable one can obtain the analogous sys-

tems
{
ei

π

l
nx;n∈Z

}
and

{
1, cos

π

l
nx, sin

π

l
nx;n ∈ N

}
, which are orthogonal in

the space (R2([−l, l]),C) and (R2([−l, l]),R) and also the corresponding or-
thonormal systems {

1√
2l
ei

π

l
nx;n ∈ Z

}

{
1√
2l
,
1√
l
cos

π

l
nx,

1√
l
cos

π

l
nx

}

Examples 2. Let Ix be an interval in Rm and Iy an interval in Rn, and

let fi(x) be an orthogonal system of functions in R2(Ix,R) and gj(y) an

orthogonal system of functions in R2(Iy,R). Then, the system of functions

{uij(x, y) = fi(x)gj(y)} is orthogonal in R2(Ix × Iy,R).
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1.3 Orthogonalization

The Gram-Schmidt orthogonalization

(1) ϕ1 =
ψ1

‖ψ1‖

(2) ϕ2 =
ψ2 − 〈ψ2, ϕ1〉ϕ1

‖ψ2 − 〈ψ2, ϕ1〉ϕ1‖ · · ·

(3) ϕn =
ψ2 −

∑n−1

k=1
〈ψn, ϕk〉ϕk

‖ψ2 − 〈ψn, ϕk〉ϕk‖
Examples 3. The process of orthogonalizing the linear independent system

1, x, x2, · · ·

in R2([−1, 1],R) leads to the system of orthogonal polynomials known as the

Legendre polynomials,

Pn(x) =
1

n!2n
dn (x2 − 1)

n

dxn

The orthonormalized Legendre polynomials have the form

P̂n(x) =

√
2n+ 1

2
Pn(x)

2 Fourier Series and Fourier Coefficients

2.1 Definition of the Fourier Coefficients and the Fourier

Series

Let {ei} be an orthonormal system and {li} be an orthogonal system of
vectors in a space X with inner product 〈, 〉.

Suppose that x =
∑

xili, the coefficient xi in this expansion of the vector

x can be found:

xi =
〈x, li〉
〈li, li〉

If li = ei, the expansion become even simple:

xi = 〈x, ei〉
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Definition 2.1. The number

{〈x, li〉
〈li, li〉

}
are the Fourier coefficients of the

vector x ∈ X in the orthogonal system {li}.

Definition 2.2. IfX is a vector space with inner product 〈, 〉 and l1, l2, · · · , ln, · · ·
is an orthogonal system of nonzero vectors in X, then for each vector x ∈ X

one can form the series

x ∼
∞∑

k=1

〈x, lk〉
〈lk, lk〉

lk (7)

This series is the Fourier series of x in the orthogonal system {lk}. In
the case of orthonormal system {ek} the Fourier series of a vector x ∈ X ha
a particular simple expression:

x ∼
∞∑

k=1

〈x, ek〉ek (8)

Examples 4. Let f(x) ∈ X = R2([−π, π],R) there corresponds a Fourier

series

f(x) ∼ a0(f)

2
+

∞∑

k=1

ak(f) cos kx+ bk(f) sin kx

in this system. The Fourier coefficients are defined as:

ak(f) =
1

π

∫

−π

πf(x) cos kx dx, k = 0, 1, 2, · · · (9)

bk(f) =
1

π

∫

−π

πf(x) sin kx dx, k = 0, 1, 2, · · · (10)

Examples 5. Let us consider the orthogonal system
{
eikx, k ∈ Z

}
in the

space R2([−π, π],C). Let f(x) ∈ R2([−π, π],C), then the coefficients

ck(f) =
1

2π

∫ π

−π

f(x)e−ikx dx

It can be proved that

ck =

{
1

2
(ak − ibk), ifk ≥ 0

1

2
(a−k + ib−k), ifk < 0

(11)
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2.2 Basic General Properties of Fourier Coefficients

and Series

Lemma 2.1. Let {lk} be a finite or countable system of non-zero pairwise

orthogonal vectors in X, and suppose the Fourier series of x ∈ X in the

system {lk} converges to xl ∈ X.

Then in the representation x = xl + h the vector h is orthogonal to xl,

moreover, h is orthogonal to the entire linear subspace generated by the system

of vectors {lk}, and also to its closure in X.

2.3 Bessel’s Inequality

Taking account of the orthogonality of the vectors xl and h in the decom-
position x = xl + h, we find by the Pythagorean theorem that ‖x‖2 =
‖xl‖2 + ‖h‖2 ≥ ‖xl‖2. This relation, written in terms of Fourier coefficients,
is called Bessel’s inequality.

‖xl‖2 =
∑

k

∣∣∣∣
〈x, lk〉
〈lk, lk〉

∣∣∣∣
2

〈lk, lk〉. ≤ ‖x‖2 (12)

Hence

∑

k

|〈x, lk〉|2
〈lk, lk〉

≤ ‖x‖2 (13)

This is Bessel’s inequality. It has a particularly simply appearance for an
orthonormal system of vectors {ek}:

∑

k

|〈x, ek〉|2 ≤ ‖x‖2 (14)

Examples 6. For the trigonometric system Bessel’s inequality has the form

|a0(f)|2
2

+
∞∑

k=1

|ak(f)|2 + |bk(f)|2 ≤
1

π

∫ π

−π

|f |2 (x) dx (15)

For the system
{
eikx; k ∈ Z

}
Bessel’s inequality can be written

∞∑

−∞

|ck(f)|2 ≤
1

2π

∫ π

−π

|f |2 (x) dx. (16)
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2.4 The Extremal Property of the Fourier Coefficients

Examples 7.

f(x) =

{
x, 0 ≤ x ≤ π

0, −π < x < 0

Examples 8.

f(x) =





x2, 0 < x < π

0, x = π

−x2, π < x < 2π
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