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1 第第第一一一类类类曲曲曲线线线曲曲曲面面面积积积分分分

1.1 第第第一一一类类类曲曲曲线线线积积积分分分

1.1.1 第第第一一一类类类曲曲曲线线线积积积分分分定定定义义义

Definition 1 设L是空间R3上可求长的连续曲线，其端点为A和B,函数f(x, y, z)在

L上有界。令A = P0, B = Pn，在L上顺次的插入分点P1, P2, · · · , Pn−1. 分别在

每个小弧段上任意取一点(ξi, ηi, ζi)， 并记第i个弧段Pi−1Pi的长度为∆si(i =

1, 2, · · · , n) 做和式
n∑
i=1

f(ξi, ηi, ζi)∆si

如果当所有小弧段的最长长度趋于零时，这个和的极限存在且唯一，与 分点

和点的取法无关，则称该极限值为f(x, y, z)在曲线L上的第一类曲线 积分，记

为： ∫
L

f(x, y, z) ds

即， ∫
L

f(x, y, z) ds = lim
λ→0

n∑
i=1

f(ξi, ηi, ζi)∆si
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其中f(x, y, z) 称为被积函数，L称为积分路径。

1.1.2 第第第一一一类类类曲曲曲线线线积积积分分分性性性质质质

性性性质质质 1 (线线线性性性) 如果函数f, g在L上的第一类曲线积分存在，则对于任意常

数α ∈ R, β ∈ R,有 ∫
L

(αf + βg) ds = α

∫
L

f dx+ β

∫
L

g ds.

性性性质质质 2 (路路路径径径可可可加加加性性性) 设曲线L = L1 + L2，如果函数f在L上的第一类曲线积分

存在，则 函数f在L1和L2上的积分也存在，反之亦然。且有∫
L

f ds =

∫
L1

f ds+

∫
L2

f ds

Theorem 1.1 设函数f(x, y, z)在L上连续，则它在L上的第一类曲线积分存

在，且有∫
L

f(x, y, z) ds =

∫ β

α

f(x(t), y(t), z(t))

√
˙x(t)

2
+ ˙y(t)

2
+ ˙z(t)

2
dt

Example 1 计算

∫
L

e
√
x2+y2 ds, 其中L 为圆周 x2 + y2 = a2,直线y = x及x轴在

第一象限围城图形的边界。

Example 2 已知一条非均匀金属线L的方程为

x = et cos t, y = et sin t, z = et, 0 ≤ t ≤ 1.

它在每一点的线密度与该点到原点的距离成反比，而且在点(1, 0, 1)处的线密度

为1， 求它的质量。

Example 3 计算I =

∫
L

(x2 + y2 + z2)ds，其中L为球面 x2 + y2 + z2 = a2和平

面x+ y + z = 0的交线。
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1.2 曲曲曲面面面的的的面面面积积积

1.2.1 曲曲曲面面面面面面积积积的的的计计计算算算

设曲面Σ的方程为

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) ∈ D

则

r(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k,

相应的Jacobi矩阵 
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


满秩，考虑D中的一个矩形微元σ,它的四个顶点为：

P1(u0, v0), P2(u0 + ∆u, v0), P3(u0 + ∆u, v0 + ∆v), P4(u0, v0 + ∆v)

它被影射为：

Q1 = r(u0, v0), Q2 = r(u0+∆u, v0), Q3 = r(u0+∆u, v0+∆v), Q4 = r(u0+∆u, v0+∆v).

那么有：

−−−→
Q1Q2 = r(u0 + ∆u, v0)− r(u0, v0) = ru(u0, v0)∆u+ ◦(∆u),

−−−→
Q1Q4 = r(u0, v0 + ∆v)− r(u0, v0) = rv(u0, v0)∆v + ◦(∆v),

∆S ≈ ‖ru(u0, v0)× rv(u0, v0)‖∆u∆v.

dS = ‖ru(u0, v0)× rv(u0, v0)‖∆u∆v.

所以有，

S =

∫∫
D

‖ru(u0, v0)× rv(u0, v0)‖ dudv

=

∫∫
D

√
EG− F 2 dudv.
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其中，

√
EG− F 2 = ‖ru × rv‖ =

[
∂(y, z)

∂(u, v)

]2

+

[
∂(z, x)

∂(u, v)

]2

+

[
∂(x, y)

∂(u, v)

]2

现在考虑两种特殊情况：

1. 设曲面的方程为z = f(x, y), (x, y) ∈ D 其中f(x, y)为连续可微函数， D 为

具有分段光滑边界的有界区域。这是有：

r = xi+ yj + zk.

这时有：

EG− F 2 =
(
1 + f 2

x

) (
1 + f 2

y

)
− (fxfy)

2 = 1 + f 2
x + f 2

y .

于是有，

S =

∫∫
D

√
1 + f 2

x(x, y) + f 2
y (x, y) dxdy

2. 设曲面的方程为H(x, y, z) = 0,其中H(x, y, z)是连续可微函数，且在Σ

上Hz(x, y, z) 6= 0. 由隐函数存在条件有：z = f(x, y), (x, y) ∈ D 从而有：

S =

∫∫
D

√
1 + f 2

x + f 2
y dxdy

=

∫∫
D

√
1 +

(
−Hx

Hz

)2

+

(
−Hy

Hz

)2

dxdy

=

∫∫
D

‖gradH‖
|Hz|

dxdy

Example 4 求抛物面z = x2 + y2被平面z = 1所截出的部分的面积。

Example 5 设Σ为球面x2 + y2 + z2 = 2Rz包含在锥面z2 = 3 (x2 + y2)内的部

分，求它的面积。

1.3 第第第一一一类类类曲曲曲面面面积积积分分分

设空间中一曲面Σ上分布着质量，任意点(x, y, z)处的密度为ρ(x, y, z),如何

求 Σ的总质量。
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Definition 2 设曲面Σ为有界光滑（或分片光滑）曲面，函数z = f(x, y, z)在曲

面Σ 上有界。将曲面分成n片小的曲面∆Σi, i = 1, 2, · · · , n，记∆Si 为第i块曲面

的面积，在∆Σi上任取一点(ξi, ηi, ζi) ，作和

n∑
i=1

f(ξi, ηi, ζi)∆Si

如果当分割的细度趋于零时，这个和的极限存在且唯一，则称此极限为

f(x, y, z)在曲面Σ上的第一类曲面积分，记为

∫∫
Σ

f(x, y, z) dS.记为

∫∫
Σ

f(x, y, z) dS = lim
λ→0

n∑
i=1

f(ξi, ηi, ζi)∆Si,

其中Σ为积分曲面，f(x, y, z)为被积函数。

1.3.1 第第第一一一类类类曲曲曲面面面积积积分分分的的的计计计算算算方方方法法法

设Σ的方程为：

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) ∈ D.

f(x, y, z)在Σ上连续，则有：∫∫
Σ

f(x, y, z) dS =

∫∫
D

f(x(u, v), y(u, v), z(u, v)
√
EG− F 2 dudv

特别的，当曲面Σ的方程为z = z(x, y), (x, y) ∈ D,则有∫∫
Σ

f(x, y, z) dS =

∫∫
D

f(x, y, z(x, y)
√

1 + z2
x(x, y) + z2

y(x, y) dxdy

Example 6 计算I =

∫∫
Σ

√
x2

a4
+
y2

b4
+
z2

c4
dS 其中，Σ为椭球面

x2

a2
+
y2

b2
+
z2

c2
=

1, a, b, c > 0.
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2 第第第二二二类类类曲曲曲线线线，，，曲曲曲面面面积积积分分分

2.1 第第第二二二类类类曲曲曲线线线积积积分分分

2.1.1 Vector Fields

Suppose a region in the plane or in the space is occupied by a moving fluid

such as air or water. Imaging that the fluid is made up of a very large number

of particles, and that any instant of time a particle has a velocity v. If we take a

picture of some particles at different position points at the same instant, we would

expect to find that these velocities vary from position to position. We can think

of a velocity vectors as being attached to each point of the fluid. Such a fluid

exemplifies a vector field. Generally, a vector field on a domain in the plane or

Figure 1: NASA’s Seasat used radar to take 350,000 wind measurement over
the world’s oceans. The arrows show wind direction; their length and the color
contouring indicate speed. Notice the heavy storm of Greenland.

in space is a function that assigns a vector to each point in the domain. A field of
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three-dimensional vectors might have a formula like

F (x, y, z) = M(x, y, z)i+N(x, y, z)j + P (x, y, z)k.

2.1.2 The Work of a Field

Let F (x) be a continuous force field acting in a domain G of the Euclidean

space Rn. The displacement of a test particle in the field is accompanied by work.

We ask how we can compute the work done by the field in moving a unit test

particle along a given trajectory, more precisely, a smooth path γ : I(γ) ⊂ G. It is

know that in a constant field F the displacement by a vector ξ is associated with

an amount of work 〈F , ξ〉

Suppose that the vector field

F (t) = M(x(t), y(t), z(t)i+N(x(t), y(t), z(t))j + P (x(t), y(t), z(t))k

represents a force throughout a region in space (it might be the force of gravity

or an electromagnetic force of some kind), and t → r(t) be a smooth mapping:

γ : I → G defined on the closed interval I = {t ∈ R|a ≤ t ≤ b}

r(t) = x(t)i+ y(t)j + z(t)k, a ≤ t ≤ b,

is a smooth curve in the region.

We take a sufficiently fine partition of the closed interval [a, b]. Then on each

interval Ii = {t ∈ I|ti−1 ≤ t ≤ ti} of the partition we have the equality

∆ri = ri+1 − ri ≈ ṙ(ti)∆ti = (ẋ(ti), ẏ(ti), ż(ti)) ∆ti.

Since the field F (t) is continuous, it can be regarded a locally constant, and for

that reason we can compute the work ∆Ai as

∆Ai ≈ 〈F (ti), ṙ(ti)∆ti〉.

A =
∑
i

∆Ai ≈
∑
i

〈F (ti), ṙ(ti)∆ti〉.
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and so passing to the limit as the partition of the closed interval I is refined, we

find that

A =

∫ b

a

〈F (t), ṙ(t)〉 dt. (1)

The expression〈F (t), ṙ(t)〉dt is written as 〈F (t), dr〉, then as assume the coordi-

nates in R3 are Cartesian coordinates, we can give this expression the form

Mdx+Ndy + Pdz,

after which we can writes Eq. 1 as

A =

∫
γ

Mdx+Ndy + Pdz (2)

or as

A =

∫
γ

ω1
F (3)

Formular 3 provides the precise meaning of the integrals of the work 1-form

along the path γ.

The expression of Equation 2 can also be written as

A =

∫
γ

F · T ds (4)

where T = (cosα, cos β, cos γ) is the unit tangent vector.

Example 7 Consider the force field F =

(
− y

x2 + y2
,

x

x2 + y2

)
defined at all

points of the plane R2 except the origin. Let us compute the work of this field

along the curve γ1 defined as x = cos t, y = sin t, 0 ≤ t ≤ 2π, and along the curve

defined by x = 2 + cos t, y = sin t, 0 ≤ t ≤ 2π

Example 8 Let r be the radius vector of a point (x, y, z) ∈ R3 and r = |r|.
Suppose a force field F = f(r)r is defined everywhere in R3 except at the origin.

This is so-called central force field. Let up find the work of F on a path: γ :
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[0, 1]→ R3 \ 0

∫
γ

f(r)(xdx+ ydy + zdz) =
1

2

∫
γ

f(r)d(x2 + y2 + z2) =
1

2

∫ 1

0

f(r(t)) dr2(t)

=
1

2

∫ 1

0

f
(√

u(t)
)

du(t) =
1

2

∫ r21

r20

f
(√

u
)

du

= Φ(r0, r1).

In particular, for the gravitational field
1

r3
r of a unit point mass located at the

origin, we obtain

Φ(r0, r1) =
1

2

∫ r21

r20

1

u
3
2

du =
1

r0

− 1

r1

Example 9 Find the work done by a variable force over a space curve, where the

force is F = (y−x2)i+ (z− y2)j+ (x− z2)k over the curve r(t) = ti+ t2j+ t3k,

from (0, 0, 0) to (1, 1, 1).

Example 10 Find flow along a helix: A fluid’s velocity field is F = xi+zj+kk.

Find the flow along the helix r(t) = cos ti+ sin tj + tk

2.1.3 Flux Across a Plane Curve

To find the rate at which a fluid is entering or leaving a region enclosed by

a smooth curve C in the xy-plane, we calculate the line integral over C of F · n,

the scalar component of the fluid’s velocity field in the direction of the curve’s

outward-pointing normal vector. The value of this integral is the flux 1 of F

across C.

Definition 3 If C is a smooth curve in the domain of a continuous vector field

F = M(x, y)i+N(x, y)j in the plane and if n is the outward-pointing unit normal

vector on C, the flux of F across C is :

A =

∫
C

F · n ds (5)

1Flux is a Latin word for flow, but many flux calculation involve no motion at all.
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To evaluate the integral of Equation 5, we begin with a smooth parameteri-

zation

r(t) = x(t)i+ y(t)j, a ≤ t ≤ b.

If the motion is counterclockwise, then

n = T × k,

and if the motion is clockwise, then

n = −T × k,

where T =
ṙ(t)

‖r(t)‖
. So for counterclockwise motion, the calculation of Equation 5

is:

A =

∮
C

F · n ds =

∫ b

a

F · ṙ(t)× k
‖ṙ(t)‖

‖ṙ(t)‖ dt

=

∫ b

a

F · ṙ(t)× k dt =

∮
C

Mdy −Ndx

(6)

Example 11 Fine the flux of F = (x− y)i+ xj across the circle x2 + y2 = 1 in

the xy-plane.

(Method I) Parametrization the circle: x = cos t, y = sin t, 0 ≤ t ≤ 2π

A =

∮
F · n ds =

∫ 2π

0

(cos t− sin t, cos t) · (cos t, sin t) dt

=

∫ 2π

0

cos2 t dt = π

(Method II)

A =

∮
C

Mdy −Ndx =

∫ 2π

0

cos t− sin t d sin t− cos t d cos t = π
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3 Surface Area and Surface Integrals

We know how to integrate a function over a flat region in a plane, but what

if the function is defined over a curved surface? To evaluate one of these so-called

surface integrals, we rewrite it as double integral over a region in a coordinate

plane beneath the surface.

Figure 2: As we soon see, the integral of a function g(x, y, z) over a surface S in
space can be calculated by evaluating a related double integral over the vertical
projection or ”shadow” of S on a coordinate plane.

3.1 Surface Area

Figure 3 shows a surface S lying above its ”shadow” region R in a plane

beneath it. The surface is defined by the equation f(x, y, z) = c. If the surface is

smooth (∇f is continuous and never vanishes on S). We can define and calculate

it area as a double integral over R.

The first step in defining the area of S is to partition the region R into small

rectangles ∆Ak of the kind we would use if we were defining an integral over R.
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Figure 3: A surface S and its vertical projection onto a plane beneath it. You can
think of R as the shadow of S on the plane. The tangent plane ∆Pk approximates
the surface patch ∆σk above ∆Ak.

Directly above each ∆Ak lies a patch of surface ∆σk that we may approximate by

a parallelogram ∆Pk in the tangent plane to S at a point Tk(xk, yk, zk) in ∆σk.

Figure 4 give a magnified view of ∆σk and ∆Pk, showing the gradient vector

∇fk at Tk and a unit vector p that is normal to R. The figure also shows the

angle γk between ∇fk and p. In our case, this translates into the statement

|(uk × vk) · p| = ∆Ak

or

∆Pk |cos γk| = ∆Ak

or

∆Pk =
∆Ak
|cos γk|

We will have cos γk 6= 0 is ∇f is not parallel to the ground plane and ∇f · p 6= 0.

Since the patches ∆Pk approximates the surface patches ∆σk that fit together
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Figure 4: Magnified view from the preceding figure. The vector uk×vk is parallel
to the vector ∇f because both vectors are normal to the plane of ∆Pk.
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to make S, the sum ∑
∆Pk =

∑ ∆Ak
|cos γk|

(7)

If we refined the partition of R. In fact, the sums on the right-hand side of the

equation 7 are approximating sums for the double integral.∫∫
R

1

|cos γ|
dA. (8)

We therefore define the area of S to be the value of this integral whenever it exists.

For any surface f(x, y, z) = c, we have |∇f · p| = |∇f | |p| |cos γ|, so

1

|cos γ|
=
|∇f |
|∇f · p|

.

The area of the surface f(x, y, z) = c over a closed and bounded plane region R is

S =

∫∫
R

|∇f |
|∇f · p|

dA. (9)

Example 12 Find the area of the surface cut from the bottom of the paraboloid

x2 + y2 − z = 0 by the plane z = 4.

We have

f(x, y, z) = x2 + y2 − z,∇f = 2xi+ 2yj − k,

|∇f · p| = |∇f · k| = 1.

S =

∫∫
R

|∇f |
|∇f · p|

dxdy =

∫∫
x2+y2≤4

√
4x2 + 4y2 + 1 dxdy.

Example 13 Find the area of the cap cut from the hemisphere x2 + y2 + z2 = 2,

by the cylinder x2 + y2 ≤ 1 in the xy-plane.

3.2 Surface Integrals

Suppose, for example, that we have an electrical charge distributed over a

surface f(x, y, z) = c like the one shown if Figure 3 and that the function g(x, y, z)

gives the charge per unit area (charge density) at each point on S. The we may
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calculate the total charge on S as an integral of below:

Totalcharge ≈
∑

g(xk, yk, zk)∆Pk =
∑

g(xk, yk, zk)
∆Ak
|cos γ|

If f , the function defining the surface S, and its first derivatives are continuous,

and if g is continuous over S, then the sums on the right-hand side of the last

equation approach the limit∫∫
R

g(x, y, z)
dA

|cos γ|
=

∫∫
R

g(x, y, z)
|∇f |
|∇f · p|

dA. (10)

The Surface Area Differential and the Differential Form for Surface

Integrals

dσ =
|∇f |
|∇f · p|∫∫
S

g dσ

Example 14 Integrate g(x, y, z) = xyz over the surface of the cube cut from the

first octant by the planes x = 1, y = 1, z = 1 (Figure 5)

Figure 5: The cube in example above.
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3.3 Orientation

We call a smooth surface S orientable or two-sided if it is possible to define

a field n of unit normal vectors on S that varies continuously with position. Once

n has been chosen, we say that we have oriented the surface, and we call the

surface together with its normal field an oriented surface. The vector n at any

point is called the positive direction at that point.

Figure 6: Smooth closed surface in space is orientable. The outward unit normal
vector defines the positive direction at each point.

Figure 7: The Mobius band is a non-orientable or one-side surface.
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3.4 Surface Integral for Flux

Suppose that F is a continuous vector field defined over an oriented surface

S and that n is the chosen unit normal field on the surface. We call the integral

of F · n over S the flux of F across S in the positive direction.

Definition 4 The flux of a three-dimensional vector field F across an oriented

surface S in the direction of n is

Flux =

∫∫
S

F · n dσ

The definition is analogous to the flux of a two-dimensional field F across a

plane curve C. In the plane, the flux is∫
C

F · n ds,

the integral of the scalar component of F normal to the curve.

If F is the velocity field of a three-dimensional fluid flow, the flux of F across

surface S is the net rate at which fluid is crossing S in the chosen positive direction.

If S is part of a surface g(x, y, z) = c, then n may be taken to be one of the two

fields

n = ± ∇g
|∇g|

(11)

depending on which one gives the preferred direction. The corresponding flux is

Flux =

∫∫
S

F · n dσ

=

∫∫
S

(
F · ±∇g
|∇g|

)
|∇g|
|∇g · p|

dA

=

∫∫
S

F · ∇g
|∇g · p|

dA

(12)

Example 15 Find the flux of F = yzj + z2k outward through the surface S cut

from the cylinder y2 + z2 = 1, z ≥ 0 by the plane x = 0 and x = 1. See Figure 6.
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Figure 8: Calculating the flux of a vector field outward through this surface. The
area of the shadow region Rxy is 2.

Solution:

The outward normal field on S may be calculated from the gradient of g(x, y, z) =

y2 + z2 to be

n = +
∇g
|∇g|

=
2yj + 2zk√

4y2 + 4z2
=

2yj + 2zk

2
= yj + zk.

With p = k, we also have

dσ =
|∇g|
|∇g · k|

dA =
2

|2z|
dA =

1

z
dA.

F · n =
(
yzj + z2k

)
· (yj + zk) = z

(
y2 + z2

)
= z.

∫∫
S

F · n dσ =

∫∫
S

z
1

z
dA =

∫∫
Rxy

dA = 2.

3.5 Parametrized Surfaces

We have defined curves in the plane in three different ways:

Explicit form: y = f(x),

Implicit form: F (x, y) = 0,
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Parametric vector form: r(t) = f(t)i+ g(t)j.

We have analogous definition of surface in space:

Explicit form: z = f(x, y),

Implicit form: F (x, y, z) = 0.

There is also a parametric form that gives the position of a point on the surface

as a vector function of two variables. The present section extends the investigation

of surface area and surface integrals to surface described parametrically.

3.5.1 Parametrizations of Surfaces

Let

r(u, v) = f(u, v)i+ g(u, v)j + h(u, v)k (13)

be a continuous vector function that is defined on a region R in the uv-plane.

Example 16 Find a parametrization of the cone

z =
√
x2 + y2, 0 ≤ z ≤ 1.

Example 17 Find a parametrization of the sphere

x2 + y2 + z2 = a2

Example 18 Find a parametrization of the cylinder

x2 + (y − 3)2 = 9, 0 ≤ z ≤ 5.

3.5.2 Surface Area

For details see section 1.2.1.

3.5.3 Surface Integral

For detail see section 1.3
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3.5.4 Flux

Example 19 Find the flux of F = yzi+ xj − z2k outward through the parabolic

cylinder y = x2, 0 ≤ x ≤ x, 0 ≤ z ≤ 4.

4 Path Independence, Potential Functions, and

Conservative Fields

In gravitational and electric fields, the amount of work it takes to move a

mass or a charge from one point to another depends only on the object’s initial

and final positions and not on the path taken in between.

4.1 Path Independence

If A and B are two points in an open region D in space, the work
∫
F · dr

done in moving a particle from A to B by a field F defined on D usually depends

on the path taken. For some special field, however, the integral’s value is the same

for all paths from A to B.

Definition 5 Let F be a field defined on an open region D in space, and suppose

that for any two points A and B the work
∫ B
A
F ·dr done in moving from A to B is

the same over all paths from A to B. Then the integral F ·dr is path independent

in D and the field F is conservative on D.

Under differentiability conditions normally met in practice, a field F is con-

servative if and only if it is the gradient of a scalar function, that is, if and only if

F = ∇f for some f . The function f is called the potential function.

Definition 6 If F is a field defined on D and F = ∇f for some scalar function

f on D, then f is called a potential function for F .

4.2 Line Integrals in Conservative Fields

Theorem 4.1 The Fundamental Theorem of Line Integral
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Let F = Mi+Nj+Pk be a vector field whose component are continuous through-

out an open connected D in space. Then there exists a differentiable function f

such that

F = ∇f =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k

if and only if for all points A and B in D the value of
∫ B
A
F · dr is independent

of the path joining A to B in D.

If the integral is independent of the path from A to B, its value is

∫ B

A

F · dr = f(B)− f(A).

Example 20 Find the work done by the conservative field

F = yzi+ xzj + xyk

along any smooth curve C joining the point A(−1, 3, 9) to B(1, 6,−4).

Theorem 4.2 Closed-Loop Property of Conservative Fields The following

statements are equivalent.

1.
∫
F · dr = 0 around every closed loop in D.

2. The field F is conservative on D.

4.3 Find Potentials for Conservative Fields

Theorem 4.3 Suppose that the domain of F is connected and simply connected.

Let Let F = Mi + Nj + Pk be a vector field whose component have continuous

first partial derivatives. Then, F is conservative if and only if

∂P

∂y
=
∂N

∂z
,
∂M

∂z
=
∂P

∂x
,
∂N

∂x
=
∂M

∂y
,

Example 21 Show that F = (ex cos y + yz)i + (xz − ex sin y)j + (yz + z)k is

conservative and find a potential function for it.
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5 Green’s Theorem in the Plane

In this section we consider how to evaluate the integral if it is not associated

with a conservative vector field, but is a flow or flux integral across a closed curve

in the xy-plane.

5.1 Divergence

We need new ideas for Green’s theorem. The first is the idea of the divergence

of a vector field at a point, sometimes called the flux density of the vector field by

physicists and engineers.

Suppose that F (x, y) = M(x, y)i+N(x, y)j is the velocity field of a fluid flow

in the plane and that the first partial derivatives of M and N are continuous at

each point of a region R. Let (x, y) be a point in R and let A be a small rectangle

with one corner at (x, y) that, along with its interior, lies entirely in R. The sides

of the rectangle parallel to the coordinate axes, have lengths of ∆x and ∆y. The

rate at which fluid leaves the rectangle across the bottom edge is approximately,

see Figure 9

F (x, y) ·−j∆x = −N(x, y)∆x

Figure 9: The rectangle for defining the divergence (flux density) of a vector field
at point (x, y).

Exit Rates:

1. Top: F (x, y + ∆y) · j∆x = N(x, y + ∆y)∆x
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2. Bottom:F (x, y) ·−j∆x = −N(x, y)∆x

3. Right: F (x+ ∆x, y) · i∆y = M(x+ ∆x, y)∆y

4. Left: F (x, y) ·−i∆y = −M(x, y)∆y.

Combining opposite pairs gives:

Flux across rectangle boundary ≈
(
∂M

∂x
+
∂N

∂y

)
∆x∆y.

We now divide by ∆x∆y to estimate the total flux per unit area of flux density

for the rectangle:

divF =
∂M

∂x
+
∂N

∂y

Definition 7 The divergence (flux density) of a vector field F = Mi+Nj at the

point (x, y) is

divF =
∂M

∂x
+
∂N

∂y

Example 22 Find the divergence of F (x, y) = (x2 − y)i+ (xy − y2)j.

5.2 Spin Around an Axis: The k-Component of Curl

The second idea we need for Green’s theorem has to do with measuring how

a paddle wheel spins at a point in a fluid flowing in a plane region. This idea

gives some sense of how the fluid is circulating around axes located at different

points and perpendicular to the region. Physicists sometimes refer to this as the

circulation density of a vector field F at a point. To obtain it, we return to the

velocity field.

F (x, y) = M(x, y)i+N(x, y)j

and the rectangle A. The rectangle is redrawn here as Figure 10.

The counterclockwise circulation of the velocity F around the boundary of A

is the sum of flow rates along the sides.

1. Top: F (x, y + ∆y) ·−i∆x = −M(x, y + ∆y)∆x
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Figure 10: The rectangle for defining the curl (circulation density) of a vector field
at point (x, y).

2. Bottom:F (x, y) · i∆x = M(x, y)∆x

3. Right: F (x+ ∆x, y) · j∆y = N(x+ ∆x, y)∆y

4. Left: F (x, y) ·−j∆y = −N(x, y)∆y.

We add opposite pairs to get:

Circulation along the boundary ≈
(
∂N

∂x
− ∂M

∂y

)
∆x∆y.

Definition 8 The k-component of the curl (circulation density) of a vector field

F = Mi+Nj at the point (x, y) is the scalar

curlF · k =
∂N

∂x
− ∂M

∂y

Example 23 Find the k-component of the curl for the vector field

F (x, y) = (x2 − y)i+ (xy − y2)j

5.3 Two Forms for Green’s Theorem

In one form, Green’s Theorem says that under suitable conditions the outward

flux of a vector field across a simple closed curve in the plane equals the double

integral of the divergence of the field over the region enclosed by the curve.

Theorem 5.1 Flux-Divergence or Normal Form

The outward flux of a field F = Mi + Nj across a simple closed curve C equals
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the double integral of div F over the region R enclosed by C.∮
C

F · n ds =

∮
C

M dy −N dx =

∫∫
R

(
∂M

∂x
+
∂N

∂y

)
dxdy (14)

In another form, Green’s Theorem says that the counterclockwise circulation

of a vector around a simple closed curve is the double integral of the k-component

of the curl of the field over the region enclosed by the curve.

Theorem 5.2 (Circulation-Curl or Tangential Form) The counterclockwise

circulation of a field F = Mi + Nj around a simple closed curve C in the plane

equals the double integral of (curlF ) · k over the region R enclosed by C.∮
C

F · T ds =

∮
C

M dx+N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dxdy. (15)

Example 24 Verify both forms of Green’s Theorem for the field

F (x, y) = (x− y)i+ xj

and the region R bounded by the unit circle

C : r(t) = cos ti+ sin tj, 0 ≤ t ≤ 2π.

Example 25 Evaluate the integral∮
C

xy dy − y2 dx

where C is the square cut from the first quadrant by the lines x = 1 and y = 1.

Example 26 Calculate the outward flux of the field F (x, y) = xi+y2j across the

square bounded by the lines x = ±1 and y = ±1.

Example 27 Verify the circulation form of Green’s Theorem on the annular ring

R : h2 ≤ x2 + y2 ≤ 1, 0 < h < 1, if

M =
−y

x2 + y2
, N =

x

x2 + y2

Here R is not simply connected.
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6 The Divergence Theorem and a Unified The-

ory

The divergence form of Green’s Theorem in the plane states that the net out-

ward flux of the field across a simple closed curve can be calculated by integrating

the divergence of the field over the region enclosed by the curve. The correspond-

ing theorem in three dimensions, called the Divergence Theorem, states that the

net outward flux of a vector field across a closed surface in space can be calculated

by integrating the divergence of the field over the region enclosed by the surface.

6.1 Divergence in Three dimension

The divergence of a vector field F = M(x, y, z)i+N(x, y, z)j+P (x, y, z)k is

the scalar function

divF = ∇ · F =
∂M

∂x
+
∂N

∂y
+
∂P

∂z
.

Example 28 Find the divergence of F = 2xzi− xyj − zk.

6.2 The Gauss-Ostrogradskii Formula

Theorem 6.1 Let R3 be three-dimensional space with a fixed coordinates system

x, y, z and D a compact domain in R3 bounded by piecewise-smooth surface. Let

P,Q,R be smooth functions in the closed domain D. Then the following relation

holds: ∫∫∫
D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz

=

∫∫
∂D

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

If we denote F = (P,Q,R), the Gauss-Ostrogradskii theorem can be written

as ∫∫∫
D

∇ · F dV =

∫∫
∂D

F · ndσ.
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Example 29 Find the flux of F = xyi+ yzj + xzk outward through the surface

of the cube cut from the first octant by the plane x = 1, y = 1, z = 1.

Example 30 Find the net outward flux of the field

F =
xi+ yj + zk

ρ3
, ρ =

√
x2 + y2 + z2

across the boundary of the region: D : 0 < a2 ≤ x2 + y2 + z2 ≤ b2

6.3 Gauss’s Law: One of the Four Great Laws of Electro-

magnetic Theory

The outward flux of E across any sphere centered at the origin is q
ε0

, and

the result is not confined to spheres. In electro- magnetic theory, the electric field

created by a point charge q located at the origin is

E(x, y, z) =
1

4πε0

q

|r|2
r

|r|
=

q

4πε0

xi+ yj + zk

ρ3

Gauss’s law: ∫∫
S

E · ndσ =
q

ε0

7 Stokes’ Theorem

In three dimensional, the circulation around a point P in a plane is described

with a vector. This vector is normal to the plane of the circulation and points

in the direction that gives it a right-hand relation to the circulation line. The

length of the vector gives the rate of the fluid’s rotation, which usually varies as

the circulation plane is tilted about P . It turns out that the vector of greatest

circulation in a flow with velocity field F = Mi+Nj + Pk is the curl vector

curlF =

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂M

∂z
− ∂P

∂x

)
j +

(
∂N

∂x
− ∂M

∂y

)
k. (16)
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If we denote

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (17)

The curl of F is ∇× F :

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣∣∣
=

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂M

∂z
− ∂P

∂x

)
j +

(
∂N

∂x
− ∂M

∂y

)
k

= curlF .

Example 31 Find the curl of F = (x2 − y) i+ 4zj + x2k.

Example 32 For a 1-form

ω = Pdx+Qdy +Rdz

defined in a domain D in R3 we obtian

dω =

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

Theorem 7.1 Let S be an oriented piecewise-smooth compact two dimensional

surface with boundary ∂S embedded in a domain G ⊂ R3, in which a smooth

1-form ω = Pdx+Qdy +Rdz is defined. Then the following relation holds:∫
∂S

Pdx+Qdy+Rdz =

∫∫
S

(
∂R

∂y
− ∂Q

∂z

)
dy∧dz+

(
∂P

∂z
− ∂R

∂x

)
dz∧dx+

(
∂Q

∂x
− ∂P

∂y

)
dx∧dy

where the orientation of the boundary ∂S is chosen consisting with the orientation

of the surface S.

In other notation, this means that∫
S

dω =

∫
∂S

ω.

Let us show the proof of the Stokes theorem. To avoid expressions that are

really too cumbersome, we shall write out only the first, main part of its two
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Figure 11: Parameters of a surface for Stokes.

expressions, and with some simplifications even in that. To be specific, let us

introduce the notation x1, x2, x3 for the coordinates of a point x ∈ R3 and verify

only that ∫
∂S

P (x)dx1 =

∫∫
S

∂P

∂x2
dx2 ∧ dx1 +

∂P

∂x3
dx3 ∧ dx1

For simplicity we shall assume that S can be obtained by a smooth mapping

x = x(t) of domain D in the plane R2 of the variables t1, t2 and bounded by a

smooth curve γ = ∂D parametrized via a mapping t = t(τ) by the points of the

closed interval α < τ < β (See Figure 11). Then the boundary Γ = ∂S of the

surface S can be written as x = x(t(τ)), where τ ranges over the closed inteval

[α, β]. Using the definiton of the integral over a curve, Green’s formula for a plane

domain D, and the definiton of the integral over a parametrized surface, we find
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successively.

∫
Γ

P (x) dx1 =

∫ β

α

P (x(t(τ)))

(
∂x1

∂t1
dt1

dτ
+
∂x1

∂t2
dt2

dτ

)
dτ

=

∫
γ

P (x(t))

(
∂x1

∂t1
dt1 +

∂x1

∂t2
dt2
)

=

∫∫
D

[
∂

∂t1

(
P
∂x1

∂t2

)
− ∂

∂t2

(
P
∂x1

∂t1

)]
dt1 ∧ dt2

=

∫∫
D

(
∂P

∂t1
∂x1

∂t2
− ∂P

∂t2
∂x1

∂t1

)
dt1 ∧ dt2

=

∫∫
D

3∑
i=1

(
∂P

∂xi
∂xi

∂t1
∂x1

∂t2
− ∂P

∂xi
∂xi

∂t2
∂x1

∂t1

)
dt1 ∧ dt2

=

∫∫
D

(
∂P

∂x2

∂x2

∂t1
+
∂P

∂x3

∂x3

∂t1

)
∂x1

∂t2

−
(
∂P

∂x2

∂x2

∂t2
+
∂P

∂x3

∂x3

∂t2

)
∂x1

∂t1
dt1 ∧ dt2

=

∫∫
D

(
∂P

∂x2

∣∣∣∣∂(x2, x1)

∂(t1, t2)

∣∣∣∣+
∂P

∂x3

∣∣∣∣∂(x3, x1)

∂(t1, t2)

∣∣∣∣) dt1 ∧ dt2

=

∫∫
S

(
∂P

∂x2
dx2 ∧ dx1 +

∂P

∂x3
dx3 ∧ dx1

)
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8 作作作业业业

1. 计算下列第一类曲线积分

(a)

∫
L

|y| ds，其中L 为单位圆周x2 + y2 = 1.

(b)

∫
L

|x|1/3 ds，其中L 为星形线x2/3 + y2/3 = a2/3.

(c)

∫
L

|x| ds，其中L 为双纽线(x2 + y2)2 = x2 − y2.

(d)

∫
L

(x2 + y2 + z2) ds，其中L 为一段螺旋线x = a cos t, y = a sin t, z =

bt, 0 ≤ t ≤ 2π.

(e)

∫
L

(xy+yz+zx) ds，其中L为球面x2+y2+z2 = a2和平面x+y+z = 0的

交线.

2. 计算下列曲面的面积

(a) 圆柱面x2 + y2 = a2被两平面x + z = 0, x− z = 0(x > 0, y > 0)所截的

部分。

(b) 抛物面x2 + y2 = 2az包含在柱面(x2 + y2)2 = 2a2xy(a > 0)内的那部

分。

3. 计算下列第一类曲面积分:

(a)

∫∫
Σ

(x+ y + z) dS，其中Σ为 左半球面x2 + y2 + z2 = a2, y ≤ 0.

(b)

∫∫
Σ

(
x2

2
+
y2

3
+
z2

4

)
dS， 其中Σ为球面x2 + y2 + z2 = a2.

(c)

∫∫
Σ

z dS， 其中Σ螺旋面x = u cos v, y = u sin v, z = v, 0 ≤ u ≤ a, 0 ≤
v ≤ 2π.

4. 计算下列第二类曲线积分

(a)

∫
L

(x2 +y2)dx+(x2−y2)dy其中L是以A(1, 0), B(2, 0), C(2, 1), D(1, 1)为

顶点的正方向，方向为逆时针方向。

(b)

∫
L

(x2− 2xy)dx+ (y2− 2xy)dy其中L是抛物线上的一段：y = x2,−1 ≤

x ≤ 1，方向由(−1, 1)到(1, 1)。
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(c)

∫
L

(x+ y)dx− (x− y)dy

x2 + y2
其中L是圆周x2 + y2 = a2，方向为逆时针方

向。

(d)

∫
L

xdx+ ydy + (x+ y − 1)dz其中L是(1, 1, 1)到(2, 3, 4)的直线段。

(e)

∫
L

ydx+ zdy+xdz其中L是曲线

 x2 + y2 + z2 = 2az

x+ z = a(a > 0)
，从z轴的正向

看去，曲线L方向为逆时针方向。

5. 证明不等式： ∣∣∣∣∫
L

P (x, y) dx+Q(x, y) dy

∣∣∣∣ ≤MC

其中C是曲线L的弧长，M = max
{√

P 2(x, y) +Q2(x, y) +R2(x, y)|(x, y) ∈ L
}

6. 计算下列第二类曲面积分

(a)

∫
Σ

(x+ y)dydz+ (y+ z)dzdx+ (z+ x)dxdy其中Σ是中心在原点，边长

为2h的立方体[−h, h]× [−h, h]× [−h, h]，方向取外向。

(b)

∫
Σ

yzdzdx其中Σ是椭球线
x2

a2
+
y2

b2
+
z2

c2
= 1的上半部分，方向取上

侧。

(c)

∫
Σ

[f(x, y, z) + x] dydz + [2f(x, y, z) + y] dzdx+ [f(x, y, z) + z] dxdy其

中f(x, y, z)为连续函数，Σ是平面x− y+ z = 1在第四象限部分，方向

取上侧。。

7. 利用Green公式计算下列积分

(a)

∫
L

(x + y)2 dx − (x2 + y2) dy其中L是以A(1, 1), B(3, 2), C(2, 5) 为顶点

的三角形的边界，方向为逆时针方向。

(b)

∫
L

xy2 dx− x2y dy其中L是圆周x2 + y2 = a2方向为逆时针方向。

(c)

∫
L

(x2y cosx + 2xy sinx − y2ex) dx + (x2 sinx − 2yex) dy其中L是星形

线x2/3 + y2/3 = a2/3, 方向为逆时针方向。

(d)

∫
L

ex [(x sin y − y cos y) dx+ (x cos y − y sin y) dy]

x2 + y2
其中L是包含原点的

简单闭曲线, 方向为逆时针方向。

8. 利用曲线积分，求下列曲线所围成图形的面积

(a) 星形线x2/3 + y2/3 = a2/3.
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(b) 抛物线(x+ y)2 = ax(a > 0)与x轴.

9. 先证明曲线积分与路径无关，在计算积分值

(a)

∫ (1,1)

(0,0)

(x− y)(dx− dy).

(b)

∫ (6,8)

(1,0)

xdx+ ydy√
x2 + y2

.

10. 证明：(2x cos y + y2 cosx)dx + (2y sinx − x2 sin y)dy在整个平面上是某个

函数的全微分，并找出它的一个原函数.

11. 设Q(x, y)在xy平面山具有连续的偏导数，曲线积分

∫
L

2xydx+Q(x, y)dy与

路径无关，并且对于任意t恒有，∫ (t,1)

(0,0)

2xydx+Q(x, y)dy =

∫ (1,t)

(0,0)

2xydx+Q(x, y)dy.

求Q(x, y).

12. 利用Gauss公式计算下列积分

(a)

∫∫
Σ

x2dydz + y2dzdx + z2dxdy，其中Σ为立方体0 ≤ x, y, z ≤ a的表

面，方向为外侧。

(b)

∫∫
Σ

(x− y + z)dydz + (y− z + x)dzdx+ (z − x+ y)dxdy，其中Σ为闭

曲面|x− y + z|+ |y − z + x|+ |z − x+ y| = 1，方向为外侧。

(c)

∫∫
Σ

(
x2 cosα + y2 cos β + z2 cos γ

)
dS，其中Σ为锥面z2 = x2 + y2介于

平面z = 0与z = h(h > 0)之间的部分，方向取下侧。

(d)

∫∫
Σ

xdydz + ydzdx+ zdxdy

(x2 + y2 + z2)3/2
，其中Σ为：

i. 椭球面x2 + 2y2 + 3z2 = 1，方向为外侧;

ii. 抛物面1− z

5
=

(x− 2)2

16
+

(y − 1)2

9
(z ≥ 0)，方向取上侧。
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