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2.1 B RMLRS
2.1.1 Vector Fields

Suppose a region in the plane or in the space is occupied by a moving fluid
such as air or water. Imaging that the fluid is made up of a very large number
of particles, and that any instant of time a particle has a velocity v. If we take a
picture of some particles at different position points at the same instant, we would
expect to find that these velocities vary from position to position. We can think
of a velocity vectors as being attached to each point of the fluid. Such a fluid

exemplifies a vector field. Generally, a vector field on a domain in the plane or

WIND SPEEDI MiS

0 2 4 6 8 10 12 14 16+

Figure 1: NASA’s Seasat used radar to take 350,000 wind measurement over
the world’s oceans. The arrows show wind direction; their length and the color
contouring indicate speed. Notice the heavy storm of Greenland.

in space is a function that assigns a vector to each point in the domain. A field of



three-dimensional vectors might have a formula like

F(x,y,2) = M(2,y,2)i+ N(x,y,2)j + P(z,y,2)k.

2.1.2 The Work of a Field

Let F(x) be a continuous force field acting in a domain G of the Euclidean
space R™. The displacement of a test particle in the field is accompanied by work.
We ask how we can compute the work done by the field in moving a unit test
particle along a given trajectory, more precisely, a smooth path v : I(y) C G. It is
know that in a constant field F' the displacement by a vector & is associated with

an amount of work (F', &)

Suppose that the vector field

F(t) = M(x(t),y(t), 2(t)i + N(2(t), y(t), 2(1))3 + P(x(t), y(t), 2(t))k

represents a force throughout a region in space (it might be the force of gravity
or an electromagnetic force of some kind), and ¢ — r(t) be a smooth mapping:

v : I — G defined on the closed interval [ = {t € Rla <t < b}
r(t) = 2(t)i +y(t)j + 2(t)k,a <t <D,

is a smooth curve in the region.

We take a sufficiently fine partition of the closed interval [a, b]. Then on each

interval I; = {t € I|t;_; <t <t;} of the partition we have the equality

Since the field F'(t) is continuous, it can be regarded a locally constant, and for

that reason we can compute the work AA; as

A=) "AA R (F(t),7(t)AL).



and so passing to the limit as the partition of the closed interval I is refined, we

find that ,
A:/ (F(t),7(t)) dt. (1)

The expression(F'(t), 7(t))dt is written as (F'(t),dr), then as assume the coordi-

nates in R? are Cartesian coordinates, we can give this expression the form
Mdzx + Ndy + Pdz,
after which we can writes Eq. 1 as
A:/de+Ndy+sz (2)
v

or as
A= / W (3)
8

Formular 3 provides the precise meaning of the integrals of the work 1-form

along the path ~.

The expression of Equation 2 can also be written as

A:/F-Tds (4)

where T = (cos «, cos 3, cosy) is the unit tangent vector.

Yy x
12 + yQ’ 72 + y2
points of the plane R? except the origin. Let us compute the work of this field

Example 7 Consider the force field F' = (— ) defined at all

along the curve vy defined as x = cost,y = sint,0 <t < 2w, and along the curve

defined by x =2 + cost,y =sint,0 <t <27

Example 8 Let r be the radius vector of a point (x,y,2z) € R® and r = |r|.
Suppose a force field F = f(r)r is defined everywhere in R® except at the origin.
This is so-called central force field. Let up find the work of F on a path: v :



[0,1] = R3*\ 0
/f (xdx + ydy + zdz) = /f (z% 4+ y* + 2%) / f(r 2()
[ (vam) e =5 [ (v aw

7o

= CI)(T'[), 7’1).

1
In particular, for the gravitational field —r of a unit point mass located at the
r

origin, we obtain

Example 9 Find the work done by a variable force over a space curve, where the
force is F = (y —2?)i+ (2 — y?) 7 + (x — 2%k over the curve r(t) = ti +t*j + t3k,
from (0,0,0) to (1,1,1).

Example 10 Find flow along a heliz: A fluid’s velocity field is F = xi+ zj + kk.
Find the flow along the helix r(t) = costi + sintj + tk

2.1.3 Flux Across a Plane Curve

To find the rate at which a fluid is entering or leaving a region enclosed by
a smooth curve C' in the xy-plane, we calculate the line integral over C' of F' - n,
the scalar component of the fluid’s velocity field in the direction of the curve’s
outward-pointing normal vector. The value of this integral is the flux ' of F

across C.

Definition 3 If C' is a smooth curve in the domain of a continuous vector field
F = M(z,y)i+ N(x,y)j in the plane and if n is the outward-pointing unit normal
vector on C, the flux of F' across C' is :

:/CF-nds (5)

IFlux is a Latin word for flow, but many flux calculation involve no motion at all.




To evaluate the integral of Equation 5, we begin with a smooth parameteri-

zation

r(t) =z(t)t+y(t)j,a <t <b.

If the motion is counterclockwise, then

n=TXxk,

and if the motion is clockwise, then

n=-Txk,

r(t
where T' = ®) . So for counterclockwise motion, the calculation of Equation 5

B s — b F) <k
A= Fponis= [F oA

b
:/ F-i“(t)xkdt:j{Mdy—Ndx
a c

Example 11 Fine the fluz of F = (x — y)i + xj across the circle 22 +y* =1 in
the xy-plane.

(Method I) Parametrization the circle: = cost,y = sint,0 <t < 27

2
A-%F-nds—/ (cost —sint, cost) - (cost,sint) dt
0

27
:/ cos’tdt =
0

(Method II)

2w
A:]{Mdy—Ndx:/ cost —sintdsint — costdcost =7
C 0

10



3 Surface Area and Surface Integrals

We know how to integrate a function over a flat region in a plane, but what
if the function is defined over a curved surface? To evaluate one of these so-called
surface integrals, we rewrite it as double integral over a region in a coordinate

plane beneath the surface.

Surface f(x, y, z) = ¢

J
N\

The vertical projection
or “shadow” of Son a
coordinate plane

Figure 2: As we soon see, the integral of a function g(z,y, z) over a surface S in
space can be calculated by evaluating a related double integral over the vertical
projection or ”shadow” of S on a coordinate plane.

3.1 Surface Area

Figure 3 shows a surface S lying above its "shadow” region R in a plane
beneath it. The surface is defined by the equation f(x,y,z) = c. If the surface is
smooth (V f is continuous and never vanishes on S). We can define and calculate

it area as a double integral over R.

The first step in defining the area of S is to partition the region R into small

rectangles A A of the kind we would use if we were defining an integral over R.

11



fx,y,2)=c¢

Figure 3: A surface S and its vertical projection onto a plane beneath it. You can
think of R as the shadow of S on the plane. The tangent plane AP, approximates
the surface patch Aoy above AAy.

Directly above each A Ay lies a patch of surface Aoy, that we may approximate by
a parallelogram AP, in the tangent plane to S at a point Ty (xy, Yk, 2x) in Aoy.

Figure 4 give a magnified view of Aoy, and APy, showing the gradient vector
V fi at T and a unit vector p that is normal to R. The figure also shows the

angle v, between V fi and p. In our case, this translates into the statement

|(uk X ’Uk) p| = AAk

or
APy |cosy| = AAg
or
AA
AP, = —F
|cos k|

We will have cos vy, # 0 is V f is not parallel to the ground plane and V f - p # 0.

Since the patches APy approximates the surface patches Aoy, that fit together

12



Vf(xg> ¥k» 22) \7.

Figure 4: Magnified view from the preceding figure. The vector u; X v;, is parallel
to the vector V f because both vectors are normal to the plane of AP;.

13



to make S, the sum
AA;
AP, = 7
D AP=) o (7)
If we refined the partition of R. In fact, the sums on the right-hand side of the

equation 7 are approximating sums for the double integral.

//R |colsv| A ®)

We therefore define the area of S to be the value of this integral whenever it exists.

For any surface f(x,y,z) = ¢, we have |V f - p| = |V f]|p||cos~], so

1|y
cos| ~ Vf-p

The area of the surface f(x,y,z) = ¢ over a closed and bounded plane region R is

5= [fwrm ®

Example 12 Find the area of the surface cut from the bottom of the paraboloid

22 +y* — 2 = 0 by the plane z = 4.

We have
f(:ﬂ,y,z) :$2+y2—Z,Vf:2.I"l,+2y]—k,
IVf-pl=IVf k=1

S = // V]l dzdy = // VAax? + 4y? + 1 daxdy.
r2+4+y2<4

R|Vf'p|

Example 13 Find the area of the cap cut from the hemisphere 22 4+ y? + 2% = 2,
by the cylinder 2% + y* < 1 in the zy-plane.

3.2 Surface Integrals

Suppose, for example, that we have an electrical charge distributed over a
surface f(x,y, z) = c like the one shown if Figure 3 and that the function g(x,y, 2)

gives the charge per unit area (charge density) at each point on S. The we may

14



calculate the total charge on S as an integral of below:

AA
Totalcharge ~ Zg Thy Yk, 26) APy, = Zg Thy Yk, 2k) | cos ]

If f, the function defining the surface S, and its first derivatives are continuous,
and if ¢ is continuous over S, then the sums on the right-hand side of the last

equation approach the limit

//Rg(l",m|C(i;47| =//Rg(rc,y,z)lvljj‘f‘p| dA. (10)

The Surface Area Differential and the Differential Form for Surface

Integrals
_ |4
VS p|

//Sgda

Example 14 Integrate g(x,y,z) = xyz over the surface of the cube cut from the

first octant by the planes x =1,y =1,z =1 (Figure 5)

[

1 Side A

/ Side C
Side B

Figure 5: The cube in example above.

15



3.3 Orientation

We call a smooth surface S orientable or two-sided if it is possible to define
a field n of unit normal vectors on S that varies continuously with position. Once
n has been chosen, we say that we have oriented the surface, and we call the
surface together with its normal field an oriented surface. The vector n at any

point is called the positive direction at that point.

I /' Positive
direction

Figure 6: Smooth closed surface in space is orientable. The outward unit normal
vector defines the positive direction at each point.

ac

Figure 7: The Mobius band is a non-orientable or one-side surface.

16



3.4 Surface Integral for Flux

Suppose that F' is a continuous vector field defined over an oriented surface
S and that m is the chosen unit normal field on the surface. We call the integral

of F'-n over S the flux of F' across S in the positive direction.

Definition 4 The flux of a three-dimensional vector field F across an oriented

surface S in the direction of n is

Flux://F~nda
s

The definition is analogous to the flux of a two-dimensional field F' across a

plane curve C. In the plane, the flux is

/F-nds,
c

the integral of the scalar component of F' normal to the curve.

If F is the velocity field of a three-dimensional fluid flow, the flux of F' across
surface S is the net rate at which fluid is crossing S in the chosen positive direction.

If S is part of a surface g(z,y, z) = ¢, then n may be taken to be one of the two

fields
Vg

depending on which one gives the preferred direction. The corresponding flux is

FluX://F-nda
S
ng) V|
= F - dA 12
//< Vol ) Vo) (12)

Vg
— F. dA
//s Vg - p

Example 15 Find the flux of F = yzj + z°k outward through the surface S cut

from the cylinder y* + 2% =1,z > 0 by the plane x = 0 and x = 1. See Figure 6.

17
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R w |
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(1,-1,0) Y
(1,1,0)
X

Figure 8: Calculating the flux of a vector field outward through this surface. The
area of the shadow region R, is 2.

Solution:
The outward normal field on S may be calculated from the gradient of g(z,y, z) =

y* + 2% to be

Vg  2yj+2zk  2yj+22k

_ — — =uyJ + zk.
"y VA + 422 2 W
With p = k, we also have
Vg 2 1
"7 Vg K] 22] 2

F-n=(yzj+2k) - (yj +2k) = z (y* + 2°) = z.

[[[7mao— [[Laas [[ ar-s

3.5 Parametrized Surfaces

We have defined curves in the plane in three different ways:
Explicit form: y = f(x),

Implicit form: F(z,y) =0,

18



Parametric vector form: r(t) = f(t)i + g(t)J.
We have analogous definition of surface in space:
Explicit form: z = f(x,y),

Implicit form: F(z,y,z) = 0.

There is also a parametric form that gives the position of a point on the surface
as a vector function of two variables. The present section extends the investigation

of surface area and surface integrals to surface described parametrically.

3.5.1 Parametrizations of Surfaces

Let
r(u,v) = f(u,v)s + g(u,v)j + h(u,v)k (13)

be a continuous vector function that is defined on a region R in the uv-plane.
Example 16 Find a parametrization of the cone
z=v22+9y%,0< 2 < 1.
Example 17 Find a parametrization of the sphere
2yt 42 =
Example 18 Find a parametrization of the cylinder

2+ (y—3°=9,0<z<5.

3.5.2 Surface Area

For details see section 1.2.1.

3.5.3 Surface Integral

For detail see section 1.3

19



3.5.4 Flux

Example 19 Find the fluz of F = yzi + x3 — 2%k outward through the parabolic
cylinder y =22, 0 <2 < z2,0 < z < 4.

4 Path Independence, Potential Functions, and

Conservative Fields

In gravitational and electric fields, the amount of work it takes to move a
mass or a charge from one point to another depends only on the object’s initial

and final positions and not on the path taken in between.

4.1 Path Independence

If A and B are two points in an open region D in space, the work [ F -dr
done in moving a particle from A to B by a field F' defined on D usually depends
on the path taken. For some special field, however, the integral’s value is the same

for all paths from A to B.

Definition 5 Let F' be a field defined on an open region D in space, and suppose
that for any two points A and B the work ff F-dr done in moving from A to B is
the same over all paths from A to B. Then the integral F - dr is path independent

in D and the field F is conservative on D.

Under differentiability conditions normally met in practice, a field F' is con-
servative if and only if it is the gradient of a scalar function, that is, if and only if

F =V f for some f. The function f is called the potential function.
Definition 6 If F' is a field defined on D and F = V [ for some scalar function

f on D, then f is called a potential function for F'.

4.2 Line Integrals in Conservative Fields

Theorem 4.1 The Fundamental Theorem of Line Integral

20



Let F = M1+ Nj+ Pk be a vector field whose component are continuous through-
out an open connected D in space. Then there exists a differentiable function f

such that

af . of . Of
F = = - '
Vf 8xz+8y]+8zk

if and only if for all points A and B in D the value of ff F - dr is independent
of the path joining A to B in D.

If the integral is independent of the path from A to B, its value is
B
| Fear =) - sa)
A
Example 20 Find the work done by the conservative field
F =yzi+ 223 + zyk
along any smooth curve C' joining the point A(—1,3,9) to B(1,6,—4).

Theorem 4.2 Closed-Loop Property of Conservative Fields The following
statements are equivalent.
1. [ F-dr =0 around every closed loop in D.

2. The field F' s conservative on D.

4.3 Find Potentials for Conservative Fields

Theorem 4.3 Suppose that the domain of F' is connected and simply connected.
Let Let F = Mt + Nj + Pk be a vector field whose component have continuous

first partial derivatives. Then, F' is conservative if and only if

oP_oN oM _op ox _ o
dy 0z 9z  Ox’ dxr Oy’

Example 21 Show that F' = (e*cosy + yz)t + (zz — e*siny)j + (yz + 2)k is

conservative and find a potential function for it.

21



5 Green’s Theorem in the Plane

In this section we consider how to evaluate the integral if it is not associated
with a conservative vector field, but is a flow or flux integral across a closed curve

in the xy-plane.

5.1 Divergence

We need new ideas for Green’s theorem. The first is the idea of the divergence
of a vector field at a point, sometimes called the flux density of the vector field by

physicists and engineers.

Suppose that F(x,y) = M(x,y)i+ N(x,y)j is the velocity field of a fluid flow
in the plane and that the first partial derivatives of M and N are continuous at
each point of a region R. Let (z,y) be a point in R and let A be a small rectangle
with one corner at (z,y) that, along with its interior, lies entirely in R. The sides
of the rectangle parallel to the coordinate axes, have lengths of Az and Ay. The
rate at which fluid leaves the rectangle across the bottom edge is approximately,

see Figure 9

F(l’,y) ' _JAQ: = —N(.’L‘,y)AJj

(y+4y)  ay @+Axy+Ay

Ay Ay
A

(x,y) Ax (@ +Axy)

Figure 9: The rectangle for defining the divergence (flux density) of a vector field
at point (x,y).

Exit Rates:
1. Top: F(z,y+ Ay) - jAx = N(z,y + Ay)Azx

22



2. Bottom:F'(z,y) - —jAz = —N(x,y)Ax
3. Right: F(x 4+ Ax,y) - 1Ay = M(xz + Az, y)Ay

4. Left: F(z,y) - —tAy = —M (z,y)Ay.

Combining opposite pairs gives:

M N
Flux across rectangle boundary ~ (88— + %—) AzxAy.
T Y

We now divide by AxAy to estimate the total flux per unit area of flux density
for the rectangle:
oM  ON
divF = — + —
v ox * dy
Definition 7 The divergence (flux density) of a vector field F = Mi+ Nj at the
point (x,y) is
oM  ON

wp o oM ON
div 8x+8y

Example 22 Find the divergence of F(z,y) = (2% —y)i + (xy — y*)J.

5.2 Spin Around an Axis: The k-Component of Curl

The second idea we need for Green’s theorem has to do with measuring how
a paddle wheel spins at a point in a fluid flowing in a plane region. This idea
gives some sense of how the fluid is circulating around axes located at different
points and perpendicular to the region. Physicists sometimes refer to this as the
circulation density of a vector field F' at a point. To obtain it, we return to the
velocity field.
F(z,y) = M(x,y)i + N(z,y)j

and the rectangle A. The rectangle is redrawn here as Figure 10.

The counterclockwise circulation of the velocity F' around the boundary of A

is the sum of flow rates along the sides.

1. Top: F(z,y + Ay) - —tAx = —M(z,y + Ay)Azx

23



x,y + Ay) Ax @+ Ax,y+ Ay)

]

Ay Ay

]

(x,y) Ax (x + Ax,y)

Figure 10: The rectangle for defining the curl (circulation density) of a vector field
at point (x,y).

2. Bottom:F'(z,y) - tAx = M (z,y)Ax
3. Right: F(z + Ax,y) - jAy = N(z + Az, y)Ay

4. Left: F(z,y) - —jAy = —N(z,y)Ay.

We add opposite pairs to get:

N M
Circulation along the boundary ~ <E;— — %—) AzxAy.
2 )

Definition 8 The k-component of the curl (circulation density) of a vector field
F = Mi+ Nj at the point (x,y) is the scalar

ON OM
F k=— 22
cur k ox dy

Example 23 Find the k-component of the curl for the vector field

F(x,y) = (2* —y)i+ (xy —y°)j

5.3 Two Forms for Green’s Theorem

In one form, Green’s Theorem says that under suitable conditions the outward
flux of a vector field across a simple closed curve in the plane equals the double

integral of the divergence of the field over the region enclosed by the curve.

Theorem 5.1 Flux-Divergence or Normal Form

The outward fluz of a field F = M1+ Nj across a simple closed curve C' equals

24



the double integral of div F' over the region R enclosed by C'.

7{1? nds_]{Mdy Ndx—// (3_M+6_N) dzdy (14)

In another form, Green’s Theorem says that the counterclockwise circulation
of a vector around a simple closed curve is the double integral of the k-component

of the curl of the field over the region enclosed by the curve.

Theorem 5.2 (Circulation-Curl or Tangential Form) The counterclockwise
circulation of a field F = M1+ Nj around a simple closed curve C in the plane
equals the double integral of (curlF') - k over the region R enclosed by C.

}{F Tds_ijdHNdy_// (a_N_a_M) dzdy.  (15)

Example 24 Verify both forms of Green’s Theorem for the field

and the region R bounded by the unit circle

C:r(t)=costi+sintg,0 <t < 27.

Example 25 Fuvaluate the integral

j{xydy—dex
c

where C' s the square cut from the first quadrant by the lines x =1 and y = 1.

Example 26 Calculate the outward fluz of the field F(x,y) = xi+y>J across the
square bounded by the lines v = £1 and y = +1.

Example 27 Verify the circulation form of Green’s Theorem on the annular ring

R:M<2>+¢4*<1,0<h<1,if

e —’N: _—
x2+y2 x2+y2

Here R is not simply connected.
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6 The Divergence Theorem and a Unified The-
ory

The divergence form of Green’s Theorem in the plane states that the net out-

ward flux of the field across a simple closed curve can be calculated by integrating

the divergence of the field over the region enclosed by the curve. The correspond-

ing theorem in three dimensions, called the Divergence Theorem, states that the

net outward flux of a vector field across a closed surface in space can be calculated

by integrating the divergence of the field over the region enclosed by the surface.

6.1 Divergence in Three dimension

The divergence of a vector field F' = M (x,y, z)i + N(z,y,2)j + P(z,y, 2)k is

the scalar function

oM ON OP

F = F=—
div v ox M dy oz 0z

Example 28 Find the divergence of F = 2xz1 — xyj — zk.

6.2 The Gauss-Ostrogradskii Formula

Theorem 6.1 Let R? be three-dimensional space with a fized coordinates system
z,y,2 and D a compact domain in R3 bounded by piecewise-smooth surface. Let

P,Q, R be smooth functions in the closed domain D. Then the following relation

holds:
8P 0
12052 38)
0z
:// Pdy N dz + Qdz N\ dz + Rdx A dy.
oD
If we denote F' = (P, Q, R), the Gauss-Ostrogradskii theorem can be written

//DVdez//aDF.nda
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Example 29 Find the flux of F' = xyt + yz3 + xzk outward through the surface
of the cube cut from the first octant by the plane x = 1,y =1,z = 1.

Example 30 Find the net outward flux of the field

. . k
F:m—l—yﬂ-i-z = /—$2+y2+22

PE

across the boundary of the region: D : 0 < a® < 2? + y* + 22 < b?

6.3 Gauss’s Law: One of the Four Great Laws of Electro-

magnetic Theory

The outward flux of E across any sphere centered at the origin is %, and

the result is not confined to spheres. In electro- magnetic theory, the electric field

created by a point charge g located at the origin is

1 g r  q wi+yj+zk
Cdmeg |r2|r]  4meg p3

//E-ndazg
S €0

7 Stokes’ Theorem

E(x,y,z)

Gauss’s law:

In three dimensional, the circulation around a point P in a plane is described
with a vector. This vector is normal to the plane of the circulation and points
in the direction that gives it a right-hand relation to the circulation line. The
length of the vector gives the rate of the fluid’s rotation, which usually varies as
the circulation plane is tilted about P. It turns out that the vector of greatest
circulation in a flow with velocity field F' = M + Nj + Pk is the curl vector

oP ON oM  OP ON oM
IF= (-2 )it (- )i+ (== -2 )k 1
o (8y 8z)z+(8z 8x)‘7+<8x 8y>k (16)
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If we denote

.0 .0 0
The curl of F'is V x F':
T 7 k
V x F = a% a% %
M N P
_ a_P_a_N + a_M_a_P + a_N_a_M k
S\ 9y 0z 0z Ox Ox dy

= curlF'.

Example 31 Find the curl of F = (22 — y) i + 427 + 2°k.

Example 32 For a I-form
w = Pdx + Qdy + Rdz

defined in a domain D in R® we obtian

_ (OR 0Q oP OR 0Q 0P
dw-(ay E)z)dy/\dz+(6z 8x)dZAdx+<6x ay)dx/\dy

Theorem 7.1 Let S be an oriented piecewise-smooth compact two dimensional
surface with boundary 0S embedded in a domain G C R3, in which a smooth

1-form w = Pdx + Qdy + Rdz is defined. Then the following relation holds:

P P
/ Pdz+Qdy+Rdz = // @ — @ dyAdz+ 8_ — @ dzAdx+ @ — 8_ dxAdy
as 0z 0z Oz Jxr Oy

where the orientation of the boundary 0S is chosen consisting with the orientation
of the surface S.

In other notation, this means that

/dw:/w
s a8

Let us show the proof of the Stokes theorem. To avoid expressions that are

really too cumbersome, we shall write out only the first, main part of its two
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Figure 11: Parameters of a surface for Stokes.

expressions, and with some simplifications even in that. To be specific, let us
introduce the notation z!, 22, 23 for the coordinates of a point # € R? and verify

only that
oP oP
1_ 2 1 3 1
/8$P(x)d:c —//Saxde A dz +8x3dx A dx

For simplicity we shall assume that S can be obtained by a smooth mapping
r = x(t) of domain D in the plane R? of the variables !, and bounded by a
smooth curve v = 0D parametrized via a mapping ¢t = ¢(7) by the points of the
closed interval @ < 7 < f (See Figure 11). Then the boundary I' = 95 of the
surface S can be written as « = x(t(7)), where 7 ranges over the closed inteval
[, B]. Using the definiton of the integral over a curve, Green’s formula for a plane

domain D, and the definiton of the integral over a parametrized surface, we find
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successively.

/F P(z)dz! =

’ ozt At 9z' de?
/a P (x(t(7))) <W§ + W@) dr
ozt - 7!
[ ooy (Grar + Srar)

// [01&1 ( 0t2> - aﬂ (ng;)} 4 A de?

_ 0P Ox OP Oz ) )
—//D (ﬁaﬁ atQ 8751) dt™ A dt

// Z OP 0x' 0x' 0P 0x 0z’ 1 o
(937 tl atz 81-7, 3t2 atl

// OP Ox? ap 923\ 9!
afI:Q 8t1 83:3 atl at2

- or o:* + OP 027 Ox’ dtt A de?
8.1:2 3152 8:63 atQ 3t1
(z2,2")| 0P |0(z®, x") o
// (8:62 tl f;2> o3 a(tl,t2) ) dt- AN dt

oP
//(@d Adz! +@dx /\d:c)

30



8 fEik
L AHE IS RS
0 [ ol ds. HRLHREEA? +12 = 1
b>éuw%k,ﬁ¢Lwé%%ﬁﬂ+fﬁ_fw
(©) /L 2| ds, EHRL KL (22 4+ y2)? = 22 — o2,

(d) /(m2 + 2+ 2 ds, HPL W—BE18iE%s = acost,y = asint,z =
L
bt 0<t<2m

(e) /(:By+yz+zw) ds, EFRL RERME 2?42 +2% = T FHr+y+2 = 0FY
L
53

2. THE T R AR
(a) BItFME2? 4+ y? = a* BN Pz + 2= 0,0 — 2 = 0(z > 0,y > 0)FT&LHY

BB
(b) PPH2? + * = 2028 FEFEE (22 + y?)? = 2a2vy(a > 0)NBIFRER
.

3. WHE NS — R A
a) //(x+y+z)d3, HAyhy FHEKE2? 4 y> + 2% = a?,y < 0.
[/( 4~—+ )cw HAYHERE2? + 2 + 22 = o

c) //zdS, HHEYIEEHr = ucosv,y = usinv,z =v,0 < u < a,0 <
2
v < 2.

4. TE TR RS

(@lé@?+fﬁﬂ+{ﬁ—y%d%§*L%@bﬂLOLB@JDAXZ1%DUﬂUﬁ
TS HIIETT |, J7 18] i 7 1]

@)A@%QWMWMﬁ—M@@ﬁ*L%m%%L%—&:y—ﬁ;&g
z <1, FRAHE-1L,DEN(L1).
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@y/@+”d — O g B g = 2, RN
G

(d) /La:dx +ydy + (v +y — DdzHALE, 1, 1D)E(2,3,4) I ELEE -

2?2 +y? + 22 = 2az
r+z=a(a>0)

@)/ﬁnx+mm+ﬂﬁga¢L%ﬂw% - BT R
L
k. WELI RN .

5. UERHANEE L.
‘/P(I,y) dz + Q(z,y) dy’ <MC
L

HFCRMAELIN, M = max {/P7(2.3) T Q(e.y) + Byl (x.y) € L)
6. VHEL IS KR
(a) / (z+y)dydz + (y + 2)dzdz + (z + 2)dedy EHSEHFOER A, 1K
PRSI ) x [ ) ] 7 RS -
@y/wwmﬁ¢ammw% +§2 — 1 EEERSY, AR
-

(© / F(@,y,2) + 2] dydz + 2F(2,y,2) + 9] dede + [f(z, 9, 2) + 2] dedy
i f(z,y, 2) NIEELREL, & PHr —y+ 2 = ITERERRES, W
BE.

7. FIFGreen AT E FHIEL 5
®>/@wwmdx—@”+ﬁﬁ@E¢L%uAaALB@2LO@£>%mﬁl
L
HIZFTH SR, 7T s 7 1 -
@y/wwmﬂ@m@ﬁm%ﬂ%ﬁ+w_fﬁm%@wﬁﬁmo
L

(c) /(x2y cosz + 2zysinz — y?e”) dz + (¥ sinz — 2ye”) dyH H LE B ¥

WEG3 218 Z g2l F R T A

(@ e” [(zsiny — y cos y)x(ii—;gx cosy — ysiny) dy] o 7 BB

ﬁaﬁ%[ﬂﬂﬂfﬁ 7 1] F i £ 77 1)
8. MM HEAR, K51 2 B R B A T R

(a) B¥a?? + 23 = a®3.
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10.

11.

12.

(b) MWY%%(z + y)* = azx(a > 0) 527
FEUEA S 5Tk, i ERSE

(1,1)
(a) /( (x — y)(dz — dy).

0,0)

6:8) pda + ydy
(b) /( e

0 VRt y?
WERA: (22 cosy + y? cosx)dx + (2ysinz — x* siny)dyfE AP _E R
A2, R E R — 1 IREREL
RQ(x, ) FEay P B EE AR SR, s / 2ayda + Q(e,y)dy5
L
BREIR, HAENTEEUEE,

(t,1) (1,t)
/ 2zydr + Q(x,y)dy = / 2zydr + Q(x,y)dy
( (

0,0) 0,0)
RQ(x,y).
FIF Gauss AT E R FL 4

(a) //E 2?dydz + y*dedz + 2Adady, HHSHIZITTHEO < 2,y,2 < alIE
T, J3 1y .

b) //E(x —y+2)dydz + (y — z + 2)dzdx + (2 — v + y)dady, HASHH
MEr —y+2]+|ly—2+az|+|z—a+y| =1, FHEAIMI-
// z?cosa + y*cos B+ 27 cosy) dS, HAXNHER:? = 2> + T
Pz = 052 = h(h > 0)Z[AIATER 5>, J7 MECH M -

// xdydz;l— ydzdr + zdxdy, .
ZE +y +Z2 3/2

i WEERE 2 +2y* + 322 =1, [ oMIl:

i, WL - = - 62>2 L ‘9”2@ > 0), FEELLM -
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