Functions of several variables

Guoning Wu

March 17, 2019

1 The Space R *^m* **and the Most Important Classed of its Subsets**

1.1 The Set R*^m* **and the distant in it**

We make the convention that \mathbb{R}^m denotes the set of ordered m-tuples (x^1, x^1, \dots, x^m) of real numbers $x^i \in \mathbb{R}$.

The function:

$$
d(x_1, x_2) = \sqrt{\sum_{i=1}^{m} (x_1^i - x_2^i)^2}
$$

obviously has the following properties:

- 1. $d(x_1, x_2) \geq 0$;
- 2. $d(x_1, x_2) = 0 \iff x_1 = x_2$
- 3. $d(x_1, x_2) = d(x_2, x_1);$
- 4. $d(x_1, x_2) \leq d(x_1, x_3) + d(x_3, x_2);$

A function defined on pairs of points (x_1, x_2) of a set X and possessing the properties 1,2,3,4 is called a **metric or distance on** *X*.

1.2 Open and Closed Sets in R *m*

Definition 1.1. *For each* $\delta > 0$ *, the set*

$$
B(a,\delta) = \{x \in \mathbb{R}^m \, | d(a,x) < \delta\}
$$

is called the ball with center $a \in \mathbb{R}^m$ *of radius* δ *or the* δ *-neighborhood of the point* $a \in \mathbb{R}^m$.

Definition 1.2. *A set* $G ⊂ \mathbb{R}^m$ *is open in* \mathbb{R}^m *if for every point* $x \in G$ *there is a ball* $B(a, \delta)$ *such that* $B(a, \delta) \subset G$ *.*

Definition 1.3. An open set in \mathbb{R}^m containing a given point is called a *neighborhood of that point in* R *m.*

Definition 1.4. *In relation to a set* $E \subset \mathbb{R}^m$ *a point is*

an interior point if some neighborhood of it is contained in E;

an exterior point if it is a interior point of the complement of E in R *m;*

a boundary point if it is neither an interior nor an exterior point of E.

2 Limits and Continuity of Functions of Several Variables

2.1 The Limit of a Function

In the next few sections we shall be consider functions $f: X \to \mathbb{R}^n$ defined on subsets of R *m*.

Definition 2.1. *A point* $A \in \mathbb{R}^n$ *is the limit of the mapping* $f : X \to \mathbb{R}^n$ *over a base* \mathcal{B} *in* X *if for every neighborhood* $V(A)$ *of the point there exists an element* $B \in \mathcal{B}$ *of the base whose image* $f(B)$ *is contained in* $V(A)$ *.*

In brief,

.

$$
\lim_{\mathcal{B}} f(x) = A := \forall V(A), \exists B \in \mathcal{B}, f(B) \subset V(A)
$$

 $\textbf{Examples 1.} \lim_{(x,y)\to (2,1)} x^2 + xy + y^2 = 7$

Examples 2. $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, where

$$
f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}
$$

 $\begin{array}{rl} \textbf{Theorem 2.1.} & \lim\limits_{\substack{P\rightarrow P_0\ P\in D}} \end{array}$ *f*(*P*) = *A* 的充要條件是:對於*D* 的任意子集*E,*只 要*P*0是*E*的聚點,就有

$$
\lim_{\substack{P \to P_0 \\ P \in E}} f(P) = A
$$

Corollary 2.2. 設 $E_1 \subset D$, P_0 是 E_1 的聚點, 若 $\lim_{\substack{P \to P_0 \ P \in E_1}}$ $f(P)$ 不存在,則 $\lim_{\substack{P\to P_0\ P\in D}}$ *f*(*P*) 不存在。

Corollary 2.3. 設 $E_1, E_2 \subset D, P_0$ 是它們的聚點,若 lim *P*→*P*_○*P*</sub> $f(P) = A_1$, $\lim_{\substack{P \to P_0 \\ P \in E_1}}$ $f(P) =$ A_2 , $\textcircled{H} A_1 \neq A_2$, $\textcircled{H} \lim_{\substack{P \to P_0 \\ P \in D}}$ *f*(*P*) 不存在。

Examples 3. $\lim_{(x,y)\to(0,0)} f(x, y)$, where

$$
f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}
$$

2.2 Continuity of a Function of Several Variables and Properties of Continuous Function

Let *E* be a subset of \mathbb{R}^m and $f: E \to \mathbb{R}^n$ be a function defined on *E* with values in \mathbb{R}^n .

Definition 2.2. *The function* $f: E \to \mathbb{R}^n$ *is a continuous at* $a \in E$ *if for every neighborhood* $V(f(a))$ *of the value* $f(a)$ *that the function assumes at a*, there exists a neighborhood $U_E(a)$ of *a* in *E* whose image $f(U_E(a))$ is *contained in* $V(f(a))$.

Thus $f: E \to \mathbb{R}^n$ is continuous at $a \in E \iff \forall V(f(a)), \exists U_E(a), s.t. f(U_E(a)) \subset$ $V(f(a)).$

It follows from the definition above that the mapping $f: E \to \mathbb{R}^n$ defined by the relation

$$
(x^1, x^2, \cdots, x^m) = x \mapsto y = (y^1, y^2, \cdots, y^n) = (f^1(x^1, x^2, \cdots, x^n), \cdots, f^n(x^1, x^2, \cdots, x^n))
$$

is continuous at a point if and only if each of the function $y^i = f^i(x^1, x^2, \dots, x^m)$ is continuous at that point.

Local properties of continuous functions

a) A mapping $f: E \mapsto \mathbb{R}^n$ is continuous at a point $a \in E$ if and only is $\omega(f; a) = 0.$

b) A mapping $f: E \mapsto \mathbb{R}^n$ is continuous at a point $a \in E$ is bounded in some neighborhood $U_E(a)$ of that point.

c) If the mapping $g: Y \mapsto \mathbb{R}^k$ of the set $Y \subset \mathbb{R}^n$ is continuous at a point $y_0 \in Y$ and the mapping $f: X \mapsto Y$ of the set $X \subset \mathbb{R}^m$ is continuous at a point $x_0 \in X$ and $f(x_0) = y_0$, then the mapping $g \circ f : X \mapsto \mathbb{R}^k$ is defined, and is continuous at $x_0 \in X$.

Global Properties of Continuous function.

a) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it is uniformly continuous on *K*.

b) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it is bounded on *K*.

c) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it assumes its maximal and minimal values at some point of *K*.

d) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a connected set $E \subset \mathbb{R}^m$ and assumes the values $f(a) = A$ and $f(b) = B$ at points $a, b \in E$, then for any *C* between *A* and *B*, there is a point $c \in E$ at which $f(c) = C$.

3 作業

1. 求下列函數的極限

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2}
$$

\n(b) $\lim_{(x,y)\to(0,0)} \frac{1 + x^2 + y^2}{x^2 + y^2}$
\n(c) $\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{\sqrt{1 + x^2 + y^2 - 1}}$
\n(d) $\lim_{(x,y)\to(0,0)} (x + y) \sin \frac{1}{x^2 + y^2}$
\n(e) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}$

2. 討論下列函數在點(0*,* 0)的重極限與累次極限

(a)
$$
f(x, y) = \frac{y^2}{x^2 + y^2}
$$

\n(b) $f(x, y) = (x + y) \sin \frac{1}{x} \sin \frac{1}{y}$
\n(c) $f(x, y) = \frac{x^2y^2}{x^2y^2 + (x - y)^2}$
\n(d) $f(x, y) = y \sin \frac{1}{x} + x \sin \frac{1}{y}$

3. 討論下列函數的連續性

(a)
$$
f(x, y) = \tan (x^2 + y^2)
$$

\n(b) $f(x, y) = \lfloor x + y \rfloor$
\n(c) $f(x, y) = \begin{cases} \frac{\sin xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$
\n(d) $f(x, y) = \begin{cases} 0, x \text{ is an irrational number} \\ y, x \text{ is a rational number} \end{cases}$