Derivative

Guoning Wu

November 12, 2019

1 Differentiable Functions

Definition 1.1. A function $f : E \to \mathbb{R}$ defined on a set E is differentiable at a point $a \in E$ that is a limit point of E if there exists a linear function $A(x - a)$ of the increment $x - a$ of the argument such that $f(x) - f(a)$ can be represented as

$$
f(x) - f(a) = A(x - a) + o(x - a) \text{ as } x \to a, a \in E
$$
 (1)

In other words, a function is differentiable at a point a if the change in its values in a neighborhood of the point in question is linear up to a correction that is infinitesimal compared with the magnitude of the displacement $x - a$ for the point a.

Definition 1.2. The linear function $A(x-a)$ in Eq. 1 is called the differential of the function f at a .

The number A is unambiguously determined due to the uniqueness of the limit.

Definition 1.3. The number

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
$$
 (2)

is called the derivative of the function f at a .

Graphically, this definition says that the derivative of f at a is the slope of the tangent line to $y = f(x)$ at a, which is the limit as $x \to a$ of the slopes of the lines through $(x, f(x))$ and $(a, f(a))$.

We can also write

$$
f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}
$$

Definition 1.4. A function $f : E \to \mathbb{R}$ defined on a set $E \subset \mathbb{R}$ is differentiable at a point $x \in E$ that is a limit point of E if

$$
f(x+h) - f(x) = A(x)h + \alpha(x; h)
$$
\n(3)

where $h \to A(x)h$ is a linear function in h and $\alpha(x; h) = \circ(h)$ as $h \to$ $0, x + h \in E$.

Definition 1.5. The function $h \to A(x)h$ of Definition 3, which is linear in h, is called the differential of the function $f : E \to \mathbb{R}$ at the point $x \in E$ and is denoted as $df(x)$ or $Df(x)$.

Thus, $df(x)(h) = A(x)h$. From definitions 2 and 3 we have

$$
\Delta f(x; h) - df(x)(h) = \alpha(x; h)
$$

1.1 Some Examples

Examples 1. Let $f(x) = \sin x$. We shall show that $f'(x) = \cos x$.

Examples 2. We shall show that $\cos'(x) = -\sin x$.

Examples 3. If $f(t) = r \sin \omega t$, then $f'(t) = r \omega \cos \omega t$. If $f(t) = r \cos \omega t$, then $f'(t) = -r\omega \sin \omega t$.

Examples 4. The instantaneous velocity and instantaneous acceleration of a point mass. Suppose a point mass is moving in a plane and that in some given coordinate system its motion is described by differentiable function of time

$$
x = x(t), y = y(t)
$$

In particular, this motion is written as in the form

$$
r(t) = (r \cos(\omega t + \alpha), r \sin(\omega t + \alpha))
$$

Examples 5. The optic property of a parabolic mirror. Let us consider the parabola $y = \frac{1}{2i}$ $\frac{1}{2p}x^2(p>0)$, and construct the tangent to it at the point $(x_0, y_0) = (x_0, \frac{1}{2i})$ $\frac{1}{2p}x_0^2$.

Examples 6.

$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}
$$

Examples 7. We shall show that

$$
e^{x+h} - e^x = e^x h + o(h)
$$

as $h \to 0$.

Examples 8. If $a > 0$, then $a^{x+h} - a^x = a^h(\ln a)h + o(h)$ as $h \to 0$.

2 The Basic Rules of Differentiation

2.1 Differentiation and the Arithmetic Operations

Theorem 2.1. If function $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are differentiable at a point $x \in X$, then a) their sum is differentiable at x, and

$$
(f+g)'(x) = (f'+g')(x),
$$

b) their product is differentiable at x , and

$$
(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x),
$$

c) their quotient is differentiable at x if $g(x) \neq 0$, and

$$
\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.
$$

Corollary 2.2. The derivative of a linear combination of differentiable functions equals the same linear combination of the derivatives of these functions.

Corollary 2.3. If the functions f_1, \dots, f_n are differentiable at x, then

$$
(f_1 f_2 \cdots f_n)'(x) = f'_1 f_2 \cdots f_n
$$

+ $f_1 f'_2 \cdots f_n + \cdots + f_1 f_2 \cdots f'_n$

Corollary 2.4. It follows from the relation between the derivative and the differential that we have:

$$
a)d(f+g)(x) = df(x) + dg(x),
$$

\n
$$
b)d(f \cdot g)(x) = g(x)df(x) + f(x)dg(x),
$$

\n
$$
c)d\left(\frac{f}{g}\right)(x) = \frac{g(x)df(x) - f(x)dg(x)}{g^2(x)}.
$$

Examples 9. Find the derivative of tan x and cot x.

2.2 Differentiation of a Composite Function (chain rule)

Theorem 2.5. If the function: $f : X \to Y \subset \mathbb{R}$ is differentiable at a point $x \in X$ and the function $g: Y \to \mathbb{R}$ is differentiable at the point $y = f(x) \in Y$, then the composite function $g \circ f : X \to \mathbb{R}$ is differentiable at x, and the differential $d(g \circ f)(x) : T\mathbb{R} \to T\mathbb{R}g(f(x))$ of their composition equals the composition $dg(y) \circ df(x)$ of their differentials.

Proof. The conditions for differentiability of the function f and g have the form.

$$
f(x+h) - f(x) = f'(x)h + o(h), h \to 0, x + h \in X
$$

$$
g(y+t) - g(y) = g'(y)t + o(t), t \to 0, y + t \in Y
$$

We remark that in the second equality here the function $o(t)$ can be considered to be defined for $t = 0$, and in the representation $o(t) = \gamma(t)t$, where $\gamma(t) \to 0$ as $t \to 0, y + t \in Y$. Setting $f(x) = y$ and $f(x + h) = y + t$, by the differentiability of f at the point x we conclude that $t \to 0$ as $h \to 0$ We now have

$$
\gamma(f(x+h) - f(x)) = \alpha(h) \to 0
$$

as $h \to 0, x + h \in X$. and thus if $t = f(x + h) - f(x)$, then,

$$
o(t) = \gamma(f(x+h) - f(x))(f(x+h) - f(x))
$$

= $\alpha(h)(f'(x)h + o(h)) = \alpha(h)f'(x)h + \alpha(h)o(h)$
= $o(h) + o(h) = o(h)$

$$
(g \circ f)(x+h) - (g \circ f)(x) = g(f(x+h)) - g(f(x))
$$

= $g(y + t) - g(y) = g'(y)t + o(t)$
= $g'(f(x))(f(x+h) - f(x)) + o(f(x+h) - f(x))$
= $g'(f(x))(f'(x)h) + g'(f(x))(o(h)) + o(f(x+h) - f(x))$
 $o(f(x+h) - f(x)) = o(h)$

Corollary 2.6. The derivative $(g \circ f)'(x)$ of the composition of differentiable real-valued functions equals the product $g'(f(x)) \cdot f'(x)$ of the derivatives of these functions computed at the corresponding points.

$$
\frac{\Delta z}{\Delta x} = \frac{\Delta z}{\Delta y} \cdot \frac{\Delta y}{\Delta x}
$$

Examples 10. Let us show that for $\alpha \in \mathbb{R}$ we have $\frac{dx^{\alpha}}{dx} = \alpha x^{\alpha-1}$ in the domain $x > 0$, that is, $dx^{\alpha} = \alpha x^{\alpha-1} dx$

Examples 11. The derivative of the logarithm of the absolute value of a differentiable function is often called its logarithmic derivative.

$$
d \left(\ln |f| \right) (x) = \frac{f'(x)}{f(x)} dx = \frac{df(x)}{f(x)}.
$$

Examples 12. The absolute and relative errors in the value of a differentiable function caused by errors in the data for the argument.

$$
f(x+h) - f(x) = f'(x)h + \alpha(x; h),
$$

$$
\frac{|f'(x)h|}{|f(x)|} = \frac{|df(x)h|}{|f(x)|}
$$

2.3 Differentiation of an Inverse Function

Theorem 2.7. Let the function $f: X \to Y$ and $f^{-1}: Y \to X$ be mutually inverse and continuous at points x_0 and $f(x_0) = y_0 \in Y$ respectively. If f is differentiable at x_0 and $f'(x_0) \neq 0$, then f^{-1} is also differentiable at the point y_0 , and

$$
(f^{-1})'(y_0) = (f'(x_0))^{-1}.
$$

Remark. If we knew in advance that the function f^{-1} was differentiable at y_0 , we would find immediately by the identity $(f^{-1} \circ f)(x) = x$ and the theorem on differentiation of a composite function that $(f^{-1})' \cdot f'(x_0) = 1$.

Remark. The condition $f'(x_0) \neq 0$ is obviously equivalent to the statement that the mapping $h \to f'(x_0)h$ realized by the differential $df(x_0) : T\mathbb{R}(x_0) \to$ $T\mathbb{R}(y_0)$ is invertible mapping $\left[df(x_0)\right]^{-1}$: $T\mathbb{R}(y_0) \to T\mathbb{R}(x_0)$ given by the formula $\tau \to (f'(x_0))^{-1} \tau$.

Examples 13. We shall show that $\arcsin y = \frac{1}{1-y^2}$ for $|y| < 1$.

Examples 14. $arccot'y = -$ 1 $\frac{1}{1+y^2}$, arctan' $y =$ 1 $1 + y^2$

Examples 15. The hyperbolic and inverse hyperbolic functions and their derivatives. The function

$$
\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)
$$

$$
\cosh x = \frac{1}{2} \left(e^x - e^{-x} \right)
$$

are respectively the hyperbolic sine and hyperbolic cosine of x . These functions, which for the time being have been introduced purely formally, arise just as naturally in many problems as the circular functions $\sin x$ and $\cos x$.

We remark that

$$
sinh(-x) = -\sinh x
$$

$$
cosh(-x) = \cosh x
$$

Moreover, the following basic identity is obvious

$$
\cosh^2 x - \sinh^2 x = 1
$$

The graphs of the functions $y = \sinh x$ and $y = \cosh x$ are shown in Fig 2. The inverse of the hyperbolic sine is

$$
x = \ln(y + \sqrt{1 + y^2})
$$

Thus,

$$
\sinh^{-1} y = \ln(y + \sqrt{1 + y^2})
$$

Similarly, using the monotonicity of the function $y = \cosh x$ on its definition,

Figure 1: Hyperbolic functions.

we have

$$
\cosh_{-}^{-1}(y) = \ln\left(y - \sqrt{y^2 - 1}\right)
$$

$$
\cosh_{+}^{-1}(y) = \ln\left(y + \sqrt{y^2 - 1}\right)
$$

From the definitions given above, we find

$$
sinh' x = \cosh x,
$$

$$
\cosh' x = \sinh x,
$$

and by the theorem on the derivative of an inverse function, we find

$$
(\sinh^{-1} y)' = \frac{1}{\sinh' x} = \frac{1}{\cosh' x} = \frac{1}{\sqrt{1 + y^2}}
$$

$$
(\cosh^{-1} y)' = \frac{1}{\cosh' x} = \frac{1}{\cosh' x} = \frac{1}{-\sqrt{\cosh^2 x - 1}} = -\frac{1}{\sqrt{y^2 - 1}}, y > 1
$$

$$
(\cosh^{-1} y)' = \frac{1}{\cosh' x} = \frac{1}{-\sqrt{\cosh^2 x - 1}} = \frac{1}{\sqrt{y^2 - 1}}, y > 1
$$

Like tan x and $\cot x$ one can consider the functions

$$
\tanh x = \frac{\sinh x}{\cosh x}, and \coth x = \frac{\cosh x}{\sinh x}
$$

called the hyperbolic tangent and hyperbolic cotangent respectively, and also the functions inverse to them, the area tangent

$$
\tanh^{-1} y = \frac{1}{2} \ln \frac{1+y}{1-y}, |y| < 1, \coth^{-1} y = \frac{1}{2} \ln \frac{y+1}{y-1}, |y| > 1,
$$

By the rules for differentiation we have

$$
\tanh' x = \frac{1}{\cosh^2 x}
$$

$$
\coth' x = -\frac{1}{\sinh x}
$$

By the theorem on the derivative of an inverse funnction

3 Table of Derivatives of the Basic Elementary Functions

4 Higher-order Derivative

If a function $f : E \to \mathbb{R}$ is differentiable at every point $x \in E$, then a new function $f' : E \to \mathbb{R}$ arises, whose value at a point $x \in E$ equals the derivative $f'(x)$ of the function f at that point.

The function $f' : E \to \mathbb{R}$ may itself has a derivative $(f'(x))' : E \to \mathbb{R}$ on E , called the second derivative of the original function f and denoted by one of the following two symbols:

$$
f''(x), \frac{\mathrm{d}^2 f(x)}{\mathrm{d} x^2}
$$

and if we wish to indicate explicitly the variable of differentiation in the first case, we also write, for example, $f''_{xx}(x)$

Function $f(x)$	Derivative $f'(x)$	Restrictions on domain of $x \in \mathbb{R}$
1. C (const)	$\boldsymbol{0}$ $\alpha x^{\alpha-1}$	
2. x^{α}		$x > 0$ for $\alpha \in \mathbb{R}$ $x \in \mathbb{R}$ for $\alpha \in \mathbb{N}$
$3. a^x$	$a^x \ln a$	$x \in \mathbb{R}$ $(a > 0, a \neq 1)$
4. $\log_a x $	$\frac{1}{x \ln a}$	$x \in \mathbb{R} \setminus 0$ $(a > 0, a \neq 1)$
$5. \sin x$	$\cos x$	
6. $\cos x$	$-\sin x$	
7. $\tan x$	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$
$8. \cot x$	$-\frac{1}{\sin^2 x}$	$x \neq \pi k, k \in \mathbb{Z}$
9. $\arcsin x$		x < 1
10. $\arccos x$		x < 1
11. $arctan x$	$\frac{\frac{1}{\sqrt{1-x^2}}}{\frac{1}{\sqrt{1-x^2}}}$	
12. $arccot x$	$-\frac{1}{1+x^2}$	
13. $\sinh x$	$\cosh x$	
14. $\cosh x$	$\sinh x$	
15. $\tanh x$	$\frac{1}{\cosh^2 x}$	
16. $\coth x$	$-\frac{1}{\sinh^2 x}$	$x\neq 0$
17. $\operatorname{arsinh} x = \ln (x + \sqrt{1 + x^2})$	$\frac{1}{\sqrt{1+x^2}}$	
18. $\arccosh x = \ln\left(x \pm \sqrt{x^2 - 1}\right)$		x >1
19. artanh $x = \frac{1}{2} \ln \frac{1+x}{1-x}$	$\pm \frac{1}{\sqrt{\frac{x^2-1}{1-x^2}}}$	x < 1
20. $\arcoth x = \frac{1}{2} \ln \frac{x+1}{x-1}$	$\frac{1}{x^2-1}$	x >1

Figure 2: Table of Derivatives of the Basic Elementary Functions.

Definition 4.1. By induction, if the derivative $f^{(n-1)}(x)$ of order $n-1$ of f has been defined, then the derivative of order n is defined by the formula:

$$
f^{(n)}(x) = \frac{\mathrm{d}}{\mathrm{d}x} f^{(n-1)}(x)
$$

The following notations are conventional for the derivative of order n .

$$
\left(f^{(n)}(x)\right)(x)
$$

The set of functions $f : E \to \mathbb{R}$ having continuous derivatives up to order n inclusive will be denoted as $C^{(n)}(E,\mathbb{R})$, and by the simpler symbol $C^{(n)}(E)$.

Examples 16.

$$
f(x) \t f'(x) \t f''(x) \t \cdots \t f^{(n)}(x)
$$

\n
$$
a^x \t a^x \ln a \t a^x \ln^2 a \t \cdots \t a^x \ln^n a
$$

\n
$$
e^x \t e^x \t \cdots \t e^x
$$

\n
$$
\sin x \t \cos x \t -\sin x \t \cdots \t \sin(n + n\pi/2)
$$

\n
$$
\cos x \t -\sin x \t \cdots \t \cos(n + n\pi/2)
$$

\n
$$
(1+x)^{\alpha} \alpha (1+x)^{\alpha-1} \alpha (\alpha-1)(1+x)^{\alpha-2} \t \cdots \t \alpha (\alpha-1) \cdots (\alpha-n+1)(1+x)^{\alpha-n}
$$

\n
$$
x^{\alpha} \t \alpha x^{\alpha-1} \t \alpha \alpha -1)x^{\alpha-2} \t \cdots \t \alpha (\alpha-1) \cdots (\alpha-n+1)x^{\alpha-n}
$$

\n
$$
\log_a |x| \t \frac{1}{\ln a} x^{-1} \t \frac{-1}{\ln a} x^{-2} \t \cdots \t \frac{(-1)^{n-1}(n-1)!}{\ln a} x^{-n}
$$

\n
$$
(-1)^{n-1}(n-1)!x^n
$$

Examples 17 (Leibniz's formula). Let $u(x)$ and $v(x)$ be functions having derivatives up to order n inclusive on a common set E . The following formula of Leibniz holds for the nth derivative of their product:

$$
(uv)^{(n)} = \sum_{m=0}^{n} {n \choose m} u^{(n-m)} v^{(m)}
$$
 (4)

Examples 18. If $P_n(x) = c_0 + c_1 x + \cdots + c_n x^n$, then

$$
P_n(0) = c_0
$$

\n
$$
P'_n(x) = c_1 + 2c_2x + \dots + nc_n x^{n-1} \Rightarrow P'_n(0) = c_1
$$

\n
$$
P''_n(x) = 2c_2 + 3 \cdot 2c_3x + \dots + n(n-1)c_n x^{n-2} \Rightarrow P''_n(0) = 2!c_2
$$

\n
$$
P_n^{(3)}(x) = 3 \cdot 2c_3 + \dots + n(n-1)(n-2)c_n x^{n-3} \Rightarrow P_n^{(3)}(0) = 3!c_3
$$

\n
$$
\vdots
$$

\n
$$
P_n^{(n)}(x) = n(n-1)(n-2) \cdots 2c_n \Rightarrow P_n^{(n)}(0) = n!c_n
$$

\n
$$
P_n^{(k)} = 0 \text{ for } k > n.
$$

Thus, the polynomial $P_n(x)$ can be written as

$$
P_n(x) = P_n^{(0)} + \frac{1}{1!} P_n^{(1)}(0)x + \frac{1}{2!} P_n^{(2)}(0)x^2 + \dots + \frac{1}{n!} P_n^{(n)}(0)x^n.
$$

Examples 19. Using Leibniz's formula and the fact that all the derivatives of a polynomial of order higher than the degree of the polynomial are zero, find the nth derivative of the following functions:

 $x^2 \sin x, x^2 \sinh x, x^2 \ln x, x^2 \sin x \cos x, x^2 e^x.$

Examples 20. Let $f(x) = \arctan x$, find the values $f^{(n)}(0)(n = 1, 2, \dots,)$

Examples 21. Let f be a differentiable function on \mathbb{R} . Show that

- 1. if f is an even function, then f' is an odd function,
- 2. if f is an odd function, then f' is an even function,
- 3. f' is odd $\Leftrightarrow f$ is even.

5 作業

5.1 解答題

設

$$
f(x) = \begin{cases} x^2, & x \ge 3\\ ax + b, & x < 3 \end{cases}
$$

試確定 a , b 的值, 使 f 在 $x = 3$ 處可導。

5.2 解答題

求下列曲線在指定點處的切線,法線方程。

(1)
$$
y = \frac{x^2}{4}
$$
, $P(2, 1)$

(2) $y = \cos x, P(0, 1)$

5.3 解答題

求下列函數的導數

(1)
$$
f(x) = |x|^3
$$

\n(2) $f(x) = \begin{cases} x+1, & x \ge 0 \\ 1, & x < 0 \end{cases}$

5.4 解答題

設函數

$$
f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

試問:

(1) α 為何值時,函數在 $x = 0$ 點連續;

(2) α 為何值時,函數在 $x = 0$ 點可導.

5.5 求下列函數的導數

(1)
$$
y = 3x^2 + 2
$$

\n(2) $y = \frac{1 - x^2}{1 + x + x^2}$
\n(3) $y = x^n + nx$
\n(4) $y = \frac{x}{m} + \frac{m}{x} + 2\sqrt{x} + \frac{2}{\sqrt{x}}$
\n(5) $y = x^3 \log_3 x$
\n(6) $y = e^x \cos x$
\n(7) $y = (x^2 + 1)(3x - 1)(1 - x^3)$
\n(8) $y = \frac{\tan x}{x}$
\n(9) $y = \frac{x}{1 - \cos x}$
\n(10) $y = \frac{1 + \ln x}{1 - \ln x}$
\n(11) $y = x\sqrt{1 - x^2}$
\n(12) $y = (x^2 - 1)^3$
\n(13) $y = (\frac{1 + x^2}{1 - x})^3$
\n(14) $y = \ln(\ln x)$
\n(15) $y = \ln(\sin x)$
\n(16) $y = \ln(x + \sqrt{1 + x^2})$
\n(17) $y = \ln\left(\frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}\right)$
\n(18) $y = (\sin x + \cos x)^3$
\n(19) $y = (\sin x^2)^3$
\n(20) $y = \arcsin(\sin^2 x)$

(21)
$$
y = x^{x^x}
$$

\n(22)
$$
y = \sqrt{x + \sqrt{x + \sqrt{x}}}
$$

\n(23)
$$
y = \sin(\sin(\sin x))
$$

\n(24)
$$
y = \sin\left(\frac{x}{\sin(\frac{x}{\sin x})}\right)
$$

\n(25)
$$
y = (x - a_1)^{a_1}(x - a_2)^{a_2} \cdots (x - a_n)^{a_n}
$$

5.6 求下列函數在指定點的高階導數

(1) $f(x) = 3x^3 + 4x^2 - 5x - 9$, $\forall f'''(1), f^{(4)}(x)(1)$ (2) $f(x) = \frac{x}{\sqrt{1+x^2}}$, $\frac{x}{(0)}, f''(1), f''(-1)$

5.7 求下列函數的高階導數

(1) $f(x) = x \ln x \cdot \vec{x} f''(x)$ (2) $f(x) = e^{-x^2}$, $\mathcal{R}f'''(x)$ (3) $f(x) = \ln(1+x)$, $\mathcal{R}f^{(5)}(x)$ (4) $f(x) = x^3 e^x$, $\mathcal{\ddot{R}}f^{(10)}(x)$

5.8 解答題

設f為二階可導函數,求下列函數的二階導數

- $(1) f (ln x)$
- (2) $f(x^n)$
- (3) $f(f(x))$

5.9 解答題

求下列函數的n階導數

(1)
$$
y = \ln x
$$

\n(2) $y = a^x (a > 0, a \neq 1)$
\n(3) $y = \frac{1}{x(1-x)}$
\n(4) $y = \frac{\ln x}{x}$
\n(5) $y = \frac{x^n}{1-x}$

5.10 解答題

求下列參數方程所確定的函數的二階導數

(1)
$$
\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}
$$

(2)
$$
\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}
$$