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1 Differentiable Functions

Definition 1.1. A function f : E → R defined on a set E is differentiable
at a point a ∈ E that is a limit point of E if there exists a linear function
A(x − a) of the increment x− a of the argument such that f(x)− f(a) can
be represented as

f(x)− f(a) = A(x− a) + ◦(x− a) as x → a, a ∈ E (1)

In other words, a function is differentiable at a point a if the change in its
values in a neighborhood of the point in question is linear up to a correction
that is infinitesimal compared with the magnitude of the displacement x− a
for the point a.

Definition 1.2. The linear function A(x−a) in Eq. 1 is called the differential
of the function f at a.

The number A is unambiguously determined due to the uniqueness of the
limit.

Definition 1.3. The number

f ′(a) = lim
x→a

f(x)− f(a)

x− a
(2)

is called the derivative of the function f at a.

Graphically, this definition says that the derivative of f at a is the slope
of the tangent line to y = f(x) at a, which is the limit as x → a of the slopes
of the lines through (x, f(x)) and (a, f(a)).

We can also write

f ′(a) = lim
∆x→0

f(a+∆x)− f(a)

∆x
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Definition 1.4. A function f : E → R defined on a set E ⊂ R is differen-
tiable at a point x ∈ E that is a limit point of E if

f(x+ h)− f(x) = A(x)h+ α(x; h) (3)

where h → A(x)h is a linear function in h and α(x; h) = ◦(h) as h →
0, x+ h ∈ E.

Definition 1.5. The function h → A(x)h of Definition 3, which is linear in
h, is called the differential of the function f : E → R at the point x ∈ E and
is denoted as df(x) or Df(x).

Thus, df(x)(h) = A(x)h.
From definitions 2 and 3 we have

∆f(x; h)− df(x)(h) = α(x; h)

1.1 Some Examples

Examples 1. Let f(x) = sin x. We shall show that f ′(x) = cosx.

Examples 2. We shall show that cos′(x) = − sin x.

Examples 3. If f(t) = r sinωt, then f ′(t) = rω cosωt. If f(t) = r cosωt,
then f ′(t) = −rω sinωt.

Examples 4. The instantaneous velocity and instantaneous acceleration of
a point mass. Suppose a point mass is moving in a plane and that in some
given coordinate system its motion is described by differentiable function of
time

x = x(t), y = y(t)

In particular, this motion is written as in the form

r(t) = (r cos(ωt+ α), r sin(ωt+ α))

Examples 5. The optic property of a parabolic mirror. Let us consider
the parabola y = 1

2p
x2(p > 0), and construct the tangent to it at the point

(x0, y0) = (x0,
1
2p
x2
0).

Examples 6.

f(x) =

{

x2 sin 1
x
, if x 6= 0

0, if x = 0.

Examples 7. We shall show that

ex+h − ex = exh+ ◦(h)
as h → 0.

Examples 8. If a > 0, then ax+h − ax = ah(ln a)h+ ◦(h) as h → 0.
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2 The Basic Rules of Differentiation

2.1 Differentiation and the Arithmetic Operations

Theorem 2.1. If function f : X → R and g : X → R are differentiable at a
point x ∈ X , then a) their sum is differentiable at x, and

(f + g)′ (x) = (f ′ + g′) (x),

b) their product is differentiable at x, and

(f · g)′ (x) = f ′(x) · g(x) + f(x) · g′(x),

c) their quotient is differentiable at x if g(x) 6= 0, and

(

f

g

)

′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

Corollary 2.2. The derivative of a linear combination of differentiable func-
tions equals the same linear combination of the derivatives of these functions.

Corollary 2.3. If the functions f1, · · · , fn are differentiable at x, then

(f1f2 · · · fn)′ (x) = f ′

1f2 · · ·fn
+ f1f

′

2 · · ·fn + · · ·+ f1f2 · · ·f ′

n

Corollary 2.4. It follows from the relation between the derivative and the
differential that we have:

a)d(f + g)(x) = df(x) + dg(x),

b)d(f · g)(x) = g(x)df(x) + f(x)dg(x),

c)d

(

f

g

)

(x) =
g(x)df(x)− f(x)dg(x)

g2(x)
.

Examples 9. Find the derivative of tanx and cotx.

2.2 Differentiation of a Composite Function (chain rule)

Theorem 2.5. If the function: f : X → Y ⊂ R is differentiable at a point
x ∈ X and the function g : Y → R is differentiable at the point y = f(x) ∈ Y ,
then the composite function g ◦ f : X → R is differentiable at x, and the
differential d(g ◦ f)(x) : TR → TRg(f(x)) of their composition equals the
composition dg(y) ◦ df(x) of their differentials.
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Proof. The conditions for differentiability of the function f and g have the
form.

f(x+ h)− f(x) = f ′(x)h + o(h), h → 0, x+ h ∈ X

g(y + t)− g(y) = g′(y)t+ o(t), t → 0, y + t ∈ Y

We remark that in the second equality here the function o(t) can be consid-
ered to be defined for t = 0, and in the representation o(t) = γ(t)t, where
γ(t) → 0 as t → 0, y + t ∈ Y . Setting f(x) = y and f(x + h) = y + t, by
the differentiability of f at the point x we conclude that t → 0 as h → 0 We
now have

γ(f(x+ h)− f(x)) = α(h) → 0

as h → 0, x+ h ∈ X . and thus if t = f(x+ h)− f(x), then,

o(t) = γ(f(x+ h)− f(x))(f(x+ h)− f(x))

= α(h)(f ′(x)h + o(h)) = α(h)f ′(x)h+ α(h)o(h)

= o(h) + o(h) = o(h)

(g ◦ f)(x+ h)− (g ◦ f)(x) = g(f(x+ h))− g(f(x))

= g(y + t)− g(y) = g′(y)t+ o(t)

= g′(f(x))(f(x+ h)− f(x)) + o(f(x+ h)− f(x))

= g′(f(x))(f ′(x)h) + g′(f(x))(o(h)) + o(f(x+ h)− f(x))

o(f(x+ h)− f(x)) = o(h)

Corollary 2.6. The derivative (g◦f)′(x) of the composition of differentiable
real-valued functions equals the product g′(f(x)) · f ′(x) of the derivatives of
these functions computed at the corresponding points.

∆z

∆x
=

∆z

∆y
· ∆y

∆x

Examples 10. Let us show that for α ∈ R we have dxα

dx
= αxα−1 in the

domain x > 0, that is, dxα = αxα−1dx

Examples 11. The derivative of the logarithm of the absolute value of a
differentiable function is often called its logarithmic derivative.

d (ln |f |) (x) = f ′(x)

f(x)
dx =

df(x)

f(x)
.
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Examples 12. The absolute and relative errors in the value of a differen-
tiable function caused by errors in the data for the argument.

f(x+ h)− f(x) = f ′(x)h+ α(x; h),

|f ′(x)h|
|f(x)| =

|df(x)h|
|f(x)|

2.3 Differentiation of an Inverse Function

Theorem 2.7. Let the function f : X → Y and f−1 : Y → X be mutually
inverse and continuous at points x0 and f(x0) = y0 ∈ Y respectively. If f
is differentiable at x0 and f ′(x0) 6= 0, then f−1 is also differentiable at the
point y0, and

(

f−1
)

′

(y0) = (f ′(x0))
−1

.

Remark. If we knew in advance that the function f−1 was differentiable at y0,
we would find immediately by the identity (f−1 ◦ f) (x) = x and the theorem
on differentiation of a composite function that (f−1)

′ · f ′(x0) = 1.

Remark. The condition f ′(x0) 6= 0 is obviously equivalent to the statement
that the mapping h → f ′(x0)h realized by the differential df(x0) : TR(x0) →
TR(y0) is invertible mapping [df(x0)]

−1 : TR(y0) → TR(x0) given by the
formula τ → (f ′(x0))

−1 τ .

Examples 13. We shall show that arcsin′ y = 1
1−y2

for |y| < 1.

Examples 14. arccot′y = − 1

1 + y2
, arctan′ y =

1

1 + y2

Examples 15. The hyperbolic and inverse hyperbolic functions and their
derivatives. The function

sinh x =
1

2

(

ex − e−x
)

cosh x =
1

2

(

ex − e−x
)

are respectively the hyperbolic sine and hyperbolic cosine of x. These func-
tions, which for the time being have been introduced purely formally, arise
just as naturally in many problems as the circular functions sin x and cosx.

We remark that

sinh(−x) = − sinh x

cosh(−x) = cosh x
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Moreover, the following basic identity is obvious

cosh2 x− sinh2 x = 1

The graphs of the functions y = sinh x and y = cosh x are shown in Fig 2.
The inverse of the hyperbolic sine is

x = ln(y +
√

1 + y2)

Thus,
sinh−1 y = ln(y +

√

1 + y2)

Similarly, using the monotonicity of the function y = cosh x on its definition,

Figure 1: Hyperbolic functions.

we have

cosh−1
−
(y) = ln

(

y −
√

y2 − 1
)

cosh−1
+ (y) = ln

(

y +
√

y2 − 1
)

From the definitions given above, we find

sinh′ x = cosh x,

cosh′ x = sinh x,

6



and by the theorem on the derivative of an inverse function, we find

(

sinh−1 y
)

′

=
1

sinh′ x
=

1

cosh′ x
=

1
√

1 + y2

(

cosh−1
−

y
)

′

=
1

cosh′ x
=

1

cosh′ x
=

1

−
√

cosh2 x− 1
= − 1

√

y2 − 1
, y > 1

(

cosh−1
+ y

)

′

=
1

cosh′ x
=

1

−
√

cosh2 x− 1
=

1
√

y2 − 1
, y > 1

Like tan x and cot x one can consider the functions

tanh x =
sinh x

cosh x
, and cothx =

cosh x

sinh x

called the hyperbolic tangent and hyperbolic cotangent respectively, and also
the functions inverse to them, the area tangent

tanh−1 y =
1

2
ln

1 + y

1− y
, |y| < 1, coth−1 y =

1

2
ln

y + 1

y − 1
, |y| > 1,

By the rules for differentiation we have

tanh′ x =
1

cosh2 x

coth′ x = − 1

sinh x

By the theorem on the derivative of an inverse funnction

3 Table of Derivatives of the Basic Elemen-

tary Functions

4 Higher-order Derivative

If a function f : E → R is differentiable at every point x ∈ E, then a
new function f ′ : E → R arises, whose value at a point x ∈ E equals the
derivative f ′(x) of the function f at that point.

The function f ′ : E → R may itself has a derivative (f ′(x))′ : E → R on
E, called the second derivative of the original function f and denoted by one
of the following two symbols:

f ′′(x),
d2f(x)

dx2

and if we wish to indicate explicitly the variable of differentiation in the first
case, we also write, for example, f ′′

xx(x)
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Figure 2: Table of Derivatives of the Basic Elementary Functions.
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Definition 4.1. By induction, if the derivative f (n−1)(x) of order n− 1 of f
has been defined, then the derivative of order n is defined by the formula:

f (n)(x) =
d

dx
f (n−1)(x)

The following notations are conventional for the derivative of order n:
(

f (n)(x)
)

(x)

The set of functions f : E → R having continuous derivatives up to order n
inclusive will be denoted as C(n)(E,R), and by the simpler symbol C(n)(E).

Examples 16.

f(x) f ′(x) f ′′(x) · · · f (n)(x)
ax ax ln a ax ln2 a · · · ax lnn a
ex ex ex · · · ex

sin x cosx − sin x · · · sin(n+ nπ/2)
cos x −sinx − cosx · · · cos(n+ nπ/2)

(1 + x)α α(1 + x)α−1 α(α− 1)(1 + x)α−2 · · · α(α− 1) · · · (α− n + 1)(1 + x)α−n

xα αxα−1 αα− 1)xα−2 · · · α(α− 1) · · · (α− n+ 1)xα−n

loga |x| 1
ln a

x−1 −1
ln a

x−2 · · · (−1)n−1(n−1)!
ln a

x−n

ln |x| x−1 −x−2 · · · (−1)n−1(n− 1)!xn

Examples 17 (Leibniz’s formula). Let u(x) and v(x) be functions having
derivatives up to order n inclusive on a common set E. The following formula
of Leibniz holds for the nth derivative of their product:

(uv)(n) =

n
∑

m=0

(

n
m

)

u(n−m)v(m) (4)

Examples 18. If Pn(x) = c0 + c1x+ · · ·+ cnx
n, then

Pn(0) = c0
P ′

n(x) = c1 + 2c2x+ · · ·+ ncnx
n−1 ⇒ P ′

n(0) = c1
P ′′

n (x) = 2c2 + 3 · 2c3x+ · · ·+ n(n− 1)cnx
n−2 ⇒ P ′′

n (0) = 2!c2
P

(3)
n (x) = 3 · 2c3 + · · ·+ n(n− 1)(n− 2)cnx

n−3 ⇒ P
(3)
n (0) = 3!c3

...

P
(n)
n (x) = n(n− 1)(n− 2) · · · 2cn ⇒ P

(n)
n (0) = n!cn

P
(k)
n = 0 for k > n.

Thus, the polynomial Pn(x) can be written as

Pn(x) = P (0)
n +

1

1!
P (1)
n (0)x+

1

2!
P (2)
n (0)x2 + · · ·+ 1

n!
P (n)
n (0)xn.
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Examples 19. Using Leibniz’s formula and the fact that all the derivatives
of a polynomial of order higher than the degree of the polynomial are zero,
find the nth derivative of the following functions:

x2 sin x, x2 sinh x, x2 ln x, x2 sin x cosx, x2ex.

Examples 20. Let f(x) = arctanx, find the values f (n)(0)(n = 1, 2, · · · , )

Examples 21. Let f be a differentiable function on R. Show that

1. if f is an even function, then f ′ is an odd function,

2. if f is an odd function, then f ′ is an even function,

3. f ′ is odd ⇔ f is even.
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5 作作作業業業

5.1 解解解答答答題題題

設

f(x) =

{

x2, x ≥ 3
ax+ b, x < 3

試確定a, b的值，使f在x = 3處可導。

5.2 解解解答答答題題題

求下列曲線在指定點處的切線，法線方程。

(1) y =
x2

4
, P (2, 1)

(2) y = cosx, P (0, 1)

5.3 解解解答答答題題題

求下列函數的導數

(1) f(x) = |x|3

(2) f(x) =

{

x+ 1, x ≥ 0
1, x < 0

5.4 解解解答答答題題題

設函數

f(x) =

{

xα sin 1
x
, x 6= 0

0, x = 0

試問：

(1) α為何值時，函數在x = 0點連續；

(2) α為何值時，函數在x = 0點可導.
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5.5 求求求下下下列列列函函函數數數的的的導導導數數數

(1) y = 3x2 + 2

(2) y =
1− x2

1 + x+ x2

(3) y = xn + nx

(4) y =
x

m
+

m

x
+ 2

√
x+

2√
x

(5) y = x3 log3 x

(6) y = ex cos x

(7) y = (x2 + 1)(3x− 1)(1− x3)

(8) y =
tanx

x

(9) y =
x

1− cosx

(10) y =
1 + ln x

1− ln x

(11) y = x
√
1− x2

(12) y = (x2 − 1)3

(13) y =

(

1 + x2

1− x

)3

(14) y = ln(ln x)

(15) y = ln(sin x)

(16) y = ln(x+
√
1 + x2)

(17) y = ln

(
√
1 + x−

√
1− x√

1 + x+
√
1− x

)

(18) y = (sin x+ cos x)3

(19) y = (sin x2)3

(20) y = arcsin(sin2 x)
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(21) y = xxx

(22) y =

√

x+

√

x+
√
x

(23) y = sin(sin(sin x))

(24) y = sin

(

x

sin( x
sinx

)

)

(25) y = (x− a1)
a1(x− a2)

a2 · · · (x− an)
an

5.6 求求求下下下列列列函函函數數數在在在指指指定定定點點點的的的高高高階階階導導導數數數

(1) f(x) = 3x3 + 4x2 − 5x− 9，求f ′′′(1), f (4)(x)(1)

(2) f(x) =
x√

1 + x2
，求f ′′(0), f ′′(1), f ′′(−1)

5.7 求求求下下下列列列函函函數數數的的的高高高階階階導導導數數數

(1) f(x) = x ln x，求f ′′(x)

(2) f(x) = e−x2

，求f ′′′(x)

(3) f(x) = ln(1 + x)，求f (5)(x)

(4) f(x) = x3ex，求f (10)(x)

5.8 解解解答答答題題題

設f為二階可導函數，求下列函數的二階導數

(1) f (lnx)

(2) f (xn)

(3) f (f(x))
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5.9 解解解答答答題題題

求下列函數的n階導數

(1) y = lnx

(2) y = ax(a > 0, a 6= 1)

(3) y =
1

x(1− x)

(4) y =
lnx

x

(5) y =
xn

1− x

5.10 解解解答答答題題題

求下列參數方程所確定的函數的二階導數

(1)

{

x = a cos3 t
y = a sin3 t

(2)

{

x = et cos t
y = et sin t
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