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1 Definition of the Integral and Description

of the Set of Integrable Functions

1.1 Introduction

Suppose a point is moving along the real line, with s(t) being its coordinate
at time t and s′(t) = v(t) its velocity at the same instant t. Assume that we
know the position S(t0) of the point at time t0 and that we receive information
on its velocity. Having this function, we wish to compute s(t) for any given
value of time t > t0.

If we assume that the velocity v(t) varies continuously, the displacement
of the point over small time interval can be computed approximately as the
product v(τ)∆t of the velocity at an arbitrary instant τ belonging to that
time interval and the magnitude ∆t of the time interval itself. Taking this
observation into account, we partition the interval [t0, t] by marking some
times ti, i = 0, 1, · · · , n so that t0 < t1 < · · · < tn = t and so the interval
[ti−1, ti] are small. Let ∆ti = ti − ti−1 and τi ∈ [ti−1, ti]. Then we have the
approximation equality

s(t) − s(t0) ≈
n∑

i=1

v(τi)∆ti

The approximation will become more precise if we partition the close
interval into smaller and smaller intervals. Thus we must conclude that in
the limit as the length λ of the largest of these intervals tends to zero we
shall obtain an exact equality

lim
λ→0

n∑

i=1

v(τi)∆ti = s(t) − s(t0) (1)
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Such sums, called Riemann sums, are encountered in a wide variety of
situations.

Let us attempt, for example, following Archimedes, to find the area under
the parabola y = x2 above the closed interval [0, 1].

lim
λ→0

n∑

i=1

f(ξi)∆xi =
1

3

1.2 Definition of the Riemann Integral

a. Partition

Definition 1.1. A partition P of a closed interval [a, b], a < b, is a finite
system of points x0, x1, · · · , xn of the interval such that a = t0 < t1 < · · · <

tn = b.

The intervals [ti−1, ti], i = 1, 2, · · · , n are called the intervals of the parti-
tions P . The largest of the lengths of the intervals of the partition P , denoted
λ(P ), is called the mesh of the partition.

Definition 1.2. We speak of a partition with distinguished points (P, ξ) on
the closed interval [a, b] if we have a partition P of [a, b] and a point ξ ∈
[ti−1, ti] has been chosen in each of the intervals of the partition [xi−1, xi], i =
1, 2, · · · , n.

We denoted the set of point (ξ1, · · · , ξn) by the single letter ξ.

b. A Base in the Set of Partitions In the set P of partitions with
distinguished points on a given interval [a, b], we consider the following base
B = {Bd} . The element Bd, d > 0, of the base B consists of all partitions
with distinguished points (P, ξ) on [a, b] for which λ(P ) < d.

c. Riemann Sums

Definition 1.3. If a function f is defined on the closed interval [a, b] and
(P, ξ) is a partition with distinguished points on this closed interval, the sum

σ(f ; P, ξ) =
n∑

i=1

f(ξi)∆xi, (2)

where ∆xi = xi −xi−1, is the Riemann sum of the function f corresponding
to the partition (P, ξ) with distinguished point on [a, b].

Thus, when the function f is fixed, the Riemann sum σ(f ; P, ξ) is a func-
tion Φ(p) = σf ; σ on the set P of all partitions p = (P, ξ) with distinguished
point on the closed interval [a, b]. Since there is a base B in P, one can ask
about the limit of the function Φp over the base.
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d. The Riemann Integral Let f be a function defined on a closed interval
[a, b].

Definition 1.4. uran The number I is the Riemann integral of the func-
tion f on the closed interval [a, b] if for every ǫ > 0 there exists δ > 0 such
that ∣∣∣∣∣I −

n∑

i=1

f(ξi)∆xi

∣∣∣∣∣ < ǫ

for any partition (P, ξ) with distinguished points on [a, b] whose mesh λ(P )
is less than δ.

Since the partition p = (P, ξ) for which λ(P ) < δ form the element Bδ

of the base B introduced above in the set P of partitions with distinguished
points, the above definition is equivalent to

I = lim
B

Φ(p)

The integral of f(x) over [a, b] is denoted

∫ b

a
f(x) dx,

in which the number a and b are called respectively the lower and upper
limits of integration. The function f is called the integrand, f(x)dx is called
the differential form, and x is the variable of integration. Thus

∫ b

a
f(x) dx = lim

λ(P )→0

n∑

i=1

f(ξi)∆xi (3)

Definition 1.5. A function f is Riemann integrable on the closed interval
[a, b] if the limit of the Riemann sums in Eq. 3 exists as λ(P ) → 0(that is,
the Riemann integral of f is defined).

The set of Riemann-integrable functions on a closed interval [a, b] will be
denoted R[a, b].

1.3 The Set of Integrable Functions

The integrability or non-integrability of a function f on [a, b] depends on the
existence of the limit below

lim
λ(P )→0

n∑

i=1

f(ξi)∆xi
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By the Cauchy criterion, this limit exists if and only if for every ǫ > 0 there
exists an element Bδ ∈ B in the base such that

|Φ(p′) − Φ(p′′)| < ǫ

for any two points p′, p′′ ∈ Bδ.
In more detailed notation, what has just been said means that for any

ǫ > 0 there exists δ > 0 such that

|σ(f ; P ′, ξ′) − σ(f ; P ′′, ξ′′)| < ǫ

or, what is the same,
∣∣∣∣∣∣

n′∑

i=1

f(ξ′
i)∆x′

i −
n′′∑

i=1

f(ξ′′
i )∆x′′

i

∣∣∣∣∣∣
< ǫ

for any partition (P ′, ξ′) and (P ′′, ξ′′) with distinguished points on the interval
[a, b] with λ(P ′) < δ and λ(P ′′) < δ.

a. A Necessary Condition for Integrability.

Proposition 1.1. A necessary condition for a function f defined on a closed
interval [a, b] to be Riemann integrable on [a, b] is that f be bounded on [a, b].

b. A Sufficient Condition for Integrability and the Most Important
Classes of Integrable Functions We begin with some notation and re-
marks that will be used in the explanation to follow.

We agree that when a partition P

a = x0 < x1 < · · · < xn = b

is given on the interval [a, b], we shall use the symbol ∆i to denote the
interval [xi−1, xi] along with ∆xi as a notation for the difference xi − xi−1. If
a partition P̃ of the closed interval [a, b] is obtained from a partition P by the
jointing new points to P , we call P̃ a refinement of P . When a refinement P̃

of a partition P is constructed, some of the closed intervals ∆i = [xi−1, xi] of
the partition P themselves undergo partitioning:

xi−1 = xi0 < xi1 < · · · < xini
= xi.

Proposition 1.2. A sufficient condition for a bounded function f to be
integrable on a closed interval [a, b] is that for every ǫ > 0 there exist a
number δ > 0 such that

n∑

i=0

ω(f ; ∆i)∆xi < ǫ

for any partition P of [a, b] with mesh λ(P ) < δ.
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Proof. Let P be a partition of [a, b] and P̃ a refinement of P . Let us estimate
the difference between the Riemann sums σ(f ; P̃ , ξ̃) − σ(f ; P, ξ). Using the
notation introduced above, we can write

∣∣∣σ(f ; P̃ , ξ̃) − σ(f ; P, ξ)
∣∣∣ =

∣∣∣∣∣∣

n∑

i=1

nj∑

j=1

f(ξij)∆xij −
n∑

i=1

f(ξi)∆xi

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

nj∑

j=1

f(ξij)∆xij −
n∑

i=1

nj∑

j=1

f(ξi)∆xij

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

nj∑

j=1

(f(ξij) − f(ξi))∆xij

∣∣∣∣∣∣
≤

n∑

i=1

nj∑

j=1

|f(ξij) − f(ξi)|∆xij

=
n∑

i=1

nj∑

j=1

ω(f ; ∆i)∆xij =
n∑

i=1

ω(f ; ∆xi)∆xi.

It follows from the estimation for the difference of the Riemann sums that
if the function satisfies the sufficient condition given in the statement of the
proposition, then for each ǫ > 0, we can find δ > 0 such that

|σ(f ; P̃ , ξ̃) − σ(f ; P, ξ)| <
ǫ

2

Now if (P ′, ξ′) and (P ′′, ξ′′) are arbitrary partitions with distinguished points
on [a, b] whose meshes satisfy λ(P ′) < δ and λ(P ′′) < δ, then, by what has
been proved, the partition P̃ = P ′ ∪ P ′′, we have

∣∣∣σ(f ; P̃ , ξ̃) − σ(f ; P ′, ξ′)
∣∣∣ <

ǫ

2
∣∣∣σ(f ; P̃ , ξ̃) − σ(f ; P ′′, ξ′′)

∣∣∣ <
ǫ

2

It follows that
|σ(f ; P ′, ξ′) − σ(f ; P ′′, ξ′′)| < ǫ

provided that λ(P ′) < δ, λ(P ′′) < ǫ. Therefore, by the Cauchy criterion, the
limit of the Riemann sums exists:

lim
λ(P )→0

n∑

i=1

f(ξi)∆xi,

that is f ∈ R[a, b].

Corollary 1.1. (f ∈ C[a, b]) ⇒ (f ∈ R[a, b]), that is, every continuous func-
tion on a closed interval is integrable on that close interval.
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Corollary 1.2. If a bounded function f on a closed interval [a, b] is contin-
uous everywhere except at a finite set of points, then f ∈ R[a, b].

Corollary 1.3. A monotonic function on a closed interval is integrable on
that interval.

Definition 1.6. Let f : [a, b] → R be a real valued function that is defined
and bounded on the closed interval [a, b], let P be a partition of [a, b], and
let ∆i(i = 1, 2, · · · , n) be the intervals of the partition P . Let mi = inf

x∈∆i

f(x)

and Mi = sup
x∈∆i

f(x), i = 1, 2, · · · , n.

The sums

s(f ; P ) =
n∑

i=1

mi∆xi

and

S(f ; P ) =
n∑

i=1

Mi∆xi

are called respectively the lower and upper Riemann sums of the function f

on the interval [a, b] corresponding to the partition P of the interval. The
sums s(f ; P ) and S(f ; P ) are also called the lower and upper Darboux sums
corresponding to the partition P of [a, b].

If (P, ξ) is an artitrary partition with distinguished points on [a, b], then
obviously

s(f ; P ) ≤ σ(f ; P, ξ) ≤ S(f ; P ) (4)

Lemma 1.4.

s(f ; P ) = inf
ξ

σ(f ; P, ξ)

S(f ; P ) = sup
ξ

σ(f ; P, ξ)

Proposition 1.3. A bounded real-valued function f : [a, b] → R is Rimann
integrable on [a, b] if and only if the following limit exist and are equal to
each other:

I = lim
λ(P )→0

s(f ; P ); I = lim
λ(P )→0

S(f ; P ). (5)

When this happens, the common value I = I = I is the integral

∫ b

a
f(x) dx
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Proposition 1.4. A necessary and sufficient condition for a function f :
[a, b] → R defined on a closed interval [a, b] to be Riemann integrable on
[a, b] is the following relation:

lim
λ(P )→0

n∑

i=1

ω(f ; ∆i)∆xi = 0 (6)

c. The Vector Space R[a, b]

Proposition 1.5. If f, g ∈ R[a, b], then

1. (f + g) ∈ R[a, b];

2. αf ∈ R[a, b], where α is a numerical coefficient;

3. |f | ∈ R[a, b];

4. f |[c,d] ∈ R[a, b] if [c, d] ⊂ [a, b];

5. (f · g) ∈ R[a, b].

2 Linearity, Additivity and Monotonicity of

the Integral

2.1 The Integral as a Linear Function on the Space

R[a, b]

Theorem 2.1. If f, g ∈ R[a, b], then αf + βg ∈ R[a, b], and
∫ b

a
(αf + βg) dx = α

∫ b

a
f(x) dx + β

∫ b

a
g(x) dx

Remark. To avoid any possible confusion, functions defined on functions
are usually called functionals. Thus we have proved that the integral is a
liner functional on the vector space R[a, b] of integrable functions.

2.2 The Integral as a Additive Function of the Interval
of Integration

The value of the integral
∫ b

a
f(x) dx = I(f ; [a, b]) depends on both the in-

tegrand and the closed interval [a, b] over which the integral is taken. For
example, if f ∈ R[a, b], then, as we know, f |[α,β] ∈ R[α, β] if [α, β] ⊂ [a, b],

that is
∫ β

α
f(x) dx is defined.
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Lemma 2.2. if a < b < c and f ∈ R[a, c], then f |[a,b] ∈ R[a, b], f |[b,c] ∈
R[b, c], and the following equality holds:

∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx

From the definition of integral, we have: if a > b then,
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

In this connection, it is also natural to set
∫ a

a
f(x) dx = 0

Theorem 2.3. Let a, b, c ∈ R and let f be a function integrable over the
largest closed interval having two of these points as endpoints. Then the
restriction of f to each of the other closed interval is also integrable over
those intervals and the following equality holds:

∫ b

a
f(x) dx +

∫ c

b
f(x) dx +

∫ a

c
f(x) dx = 0

Definition 2.1. Suppose that to each (α, β) of points α, β ∈ [a, b] a number
I(α, β) is assigned so that

I(α, γ) = I(α, β) + I(β, γ)

for any triple point α, β, γ. Then the function I(α, β) is called an addi-
tive(oriented) interval function defined on intervals contained in [a, b].

If f ∈ [A, B], and a, b, c ∈ [A, B], then, setting I(a, b) =
∫ b

a f(x) dx, we
conclude that ∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx.

that is, the integral is an additive interval function on the interval of inte-
gration.

2.3 Estimation of the Integral, Monotonicity of the In-
tegral, and the Mean-Value Theorem

2.3.1 A General Estimation of the Integral.

Theorem 2.4. If a ≤ b and f ∈ R[a, b], then |f | ∈ R[a, b] and the following
inequality holds ∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f |(x) dx
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If |f |(x) ≤ C on [a, b] then

∫ b

a
|f | dx ≤ C(b − a)

2.3.2 Monotonicity of the Integral and the First Mean-Value The-
orem

Theorem 2.5. If a ≤ b, f1, f2 ∈ R[a, b], f1(x) ≤ f2(x), ∀x ∈ [a, b], then

∫ b

a
f1(x) dx ≤

∫ b

a
f2(x) dx

Corollary 2.6. If a ≤ b, f ∈ R[a, b], m ≤ f(x) ≤ M, ∀x ∈ [a, b], then

m(b − a) ≤
∫ b

a
f(x) dx ≤ M(b − a)

Corollary 2.7. If a ≤ b, f ∈ R[a, b], m =
∫

x∈[a,b] f(x), M = supx∈[a,b] f(x),
then there exists a number µ ∈ [m, M ] such that

∫ b

a
f(x) dx = µ(b − a)

Corollary 2.8. If f ∈ C[a, b], there exists a point ξ ∈ [a, b] such that

∫ b

a
f(x) dx = f(ξ)(b − a) (7)

Remark. The equality Equation(7) is often called the first mean-value

theorem. We, however, reserve that name for the following somewhat more
general proposition.

Theorem 2.9 ((First Mean-Value Theorem)). Let f, g ∈ R[a, b], m =
infx∈[a,b] f(x), M = supx∈[a,b] f(x). If g is nonnegative (or nonpositive) on
[a, b], then ∫ b

a
(fg) dx = µ

∫ b

a
g(x) dx

where µ ∈ [m, M ] If, in addition, it is known that f ∈ C[a, b], then there
exits a point ξ ∈ [a, b] such that

∫ b

a
(fg) dx = f(ξ)

∫ b

a
g(x) dx
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Abel’s Transformation Let Ak =
k∑

i=1

ai, A0 = 0, then

n∑

i=1

aibi =
n∑

i=1

(Ai − Ai−1)bi =
n∑

i=1

Aibi −
n∑

i=1

Ai−1bi

=
n∑

i=1

Aibi −
n−1∑

i=0

Aibi+1 = Anbn − A0b1 +
n−1∑

i=1

Ai(bi − bi−1)

= Anbn − A0b1 +
n−1∑

i=1

Ai(bi − bi−1)

= Anbn +
n−1∑

i=1

Ai(bi − bi−1)

Lemma 2.10. If the numbers Ak =
∑k

i=1 ai(k = 1, 2, · · · , n) satisfy the
inequality m ≤ Ak ≤ M and the numbers bi, i = 1, 2, · · · , n are nonnegative
and bi ≥ bi+1 for i = 1, 2, · · · , n − 1, then,

mb1 ≤
n∑

i=1

aibi ≤ Mb1

Lemma 2.11. If f ∈ R[a, b], then for any x ∈ [a, b] the function

F (x) =
∫ x

a
f(t) dt

is defined and F (x) ∈ C[a, b].

Lemma 2.12. If f, g ∈ R[a, b] and g is a non-negative non-increasing func-
tion on [a, b] then there exists a point ξ ∈ [a, b] such that

∫ b

a
(fg) dx = g(a)

∫ ξ

a
f(x) dx.

Theorem 2.13 (Second mean-value theorem for the integral). If f, g ∈
R[a, b] and g is a monotonic function on [a, b], then there exists a point
ξ ∈ [a, b] such that

∫ b

a
(fg) dx = g(a)

∫ ξ

a
f(x) dx + g(b)

∫ b

ξ
f(x) dx

3 The Integral and the Derivative

3.1 The Integral and the Primitive

Let f be a Riemann-integrable function on a closed interval [a, b]. On this
interval let us consider the function

F (x) =
∫ x

a
f(t) dt (8)
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often called an integral with variable upper bound limit.
Since f ∈ R[a, b], if follows that f |[a,x] ∈ R[a, x] if [a, x] ⊂ [a, b], therefore

the function
x → F (x)

is unambiguously defined for x ∈ [a, b].

Lemma 3.1. If f ∈ R[a, b] and the function f is continuous at a point
x ∈ [a, b], then the function F defined on [a, b] by Equation(8) is differentiable
at the point x, and the following equality holds:

F ′(x) = f(x)

Theorem 3.2. Every continuous function f : [a, b] → R on the closed inter-
val [a, b] has a primitive, and every primitive of f on [a, b] has the form

F(x) =
∫ x

a
f(t) dt + C

Definition 3.1. A continuous function x → F (x) on an interval of the real
line is called a primitive (or generalized primitive) of the function x → f(x)
defined on the same interval if the relation F ′(x) = f(x) holds at all points
of the interval, with only a finite number of exceptions.

3.2 The Newton-Leibniz Formula

Theorem 3.3. If f : [a, b] → R is a bounded function with a finite number
of points of discontinuity, then f ∈ R[a, b] and

∫ b

a
f(x) dx = F(b) − F(a) (9)

where F : [a, b] → R is any primitive of f on [a, b].

Remark. Relation(9), which is fundamental for all of analysis, is called the
Newton-Leibniz formula( or fundamental theorem of calculus.)

3.3 Integration by Parts in the Definite Integral and

Taylor’s Formula

Proposition 3.1. If the function u(x) and v(x) are continuously differen-
tiable on a closed interval with endpoints a and b, then

∫ b

a
(u(x)v′(x)) dx = (uv)|ba −

∫ b

a
(v(x)u′(x)) dx

or ∫ b

a
u(x) dv(x) = (uv)|ba −

∫ b

a
v(x) du(x)
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As a corollary we now obtain the Taylor formula with integral form of
the remainder. Suppose on the closed interval with endpoints a and x the
function t → f(t) has n continuous derivatives, we have

f(x) − f(a) =
∫ x

a
f ′(t) dt = −

∫ x

a

∫ x

a
f ′(t)(x − t)′ dt

= −f ′(t)(x − t)|xa +
∫ x

a
f ′′(t)(x − t) dt

= f ′(a)(x − a) − 1

2

∫ x

a
f ′′(t)[(x − t)2]′ dt

= f ′(a)(x − a) − 1

2
f ′′(t)(x − t)2|xa +

1

2

∫ x

a
f ′′′(t)(x − t)2 dt

= f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2 − 1

2 · 3

∫ x

a
f ′′′(t)[(x − t)3]′ dt

= · · ·

= f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2 + · · · +

1

(n − 1)!
f (n−1)(a)(x − a)n−1 + rn−1(a; x)

where

rn−1(a; x) =
1

(n − 1)!

∫ x

a
f (n)(t)(x − t)n−1 dt. (10)

Proposition 3.2. If the function t → f(t) has continuous derivatives up to
order n inclusive on the closed interval with endpoints a and x, then Taylor’s
formula holds:

f(x) = f(a) +
1

1!
f ′(a)(x − a) + · · · +

1

(n − 1)!
f (n−1)(a)(x − a)n−1 + rn−1(a; x),

with remainder term rn−1(a; x) represented in the integral form (10).

We note that from the First Mean-Value Theorem, we can derive at the
Lagrange remainder.

3.4 Change of Variable in an Integral

Proposition 3.3. If ϕ : [α, β] → [a, b] is a continuously differentiable map-
ping of the closed interval [α, β] into the closed interval [a, b] such that
ϕ(α) = a and ϕ(β) = b, then for any continuous function f(x) on [a, b]
the function f(ϕ(t))ϕ′(t) is continuous on the closed interval [α, β], and

∫ b

a
f(x) dx =

∫ β

α
f(ϕ(t))ϕ′(t) dt. (11)
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3.5 Some Examples

Examples 1. ∫ 1

−1

√
1 − x2 dx

Examples 2. ∫ π

−π
sin mx cos nx dx = 0,

∫ π

−π
sin2 mx, dx = π

∫ π

−π
cos2 mx, dx = π,

m, n ∈ N.

Examples 3. Let f ∈ R[−a, a], we shall show that

∫ a

−a
f(x) dx =





2
∫ a

0 f(x) dx, if f is an even function.

0, if f is an odd function.

Examples 4. Let f be a function defined on the entire real line R and having
period T , that is f(x + T ) = f(x) for all x ∈ R. If f is integrable on each
finite closed interval, then for any a ∈ R we have the equality

∫ a+T

a
f(x) dx =

∫ T

0
f(x) dx,

that is, the integral of a periodic function over an interval whose length equals
the period T of the function is independent of the interval of integration on
the real line.

Examples 5.

lim
x→∞

(∫ x
0 et2

dt
)2

∫ x
0 e2t2 dt

Examples 6. ∫ π
2

0
f(sin x) dx =

∫ π
2

0
f(cos x) dx

∫ π

0
xf(sin x) dx =

π

2

∫ π

0
f(sin x) dx
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Examples 7. ∫ π
2

0
sinn x dx =

∫ π
2

0
cosn x dx

Wallis formula

π

2
= lim

n→∞

[
(2m)!!

(2m − 1)!!

]2

· 1

2m + 1

Examples 8. The quality µ =
∫ b

a f(x) dx is called the integral average value
of the function on the closed interval [a, b].

Let f(x) be a function that is defined on R and integrable on any closed
interval. We use f to construct the new function

Fδ(x) =
1

2δ

∫ x+δ

x−δ
f(t) dt

whose value at the point x is the integral average value f in the δ−neighbohood
of x.

We shall show that Fδ(x) is, compared to f , more regular. More precisely,
if f is integrable on any close interval [a, b], the Fδ(x) is continuous on R,
and if f ∈ C(R), then Fδ(x) ∈ C(1)(R).

4 Some Applications of Integration

4.1 Additive Interval Functions and the Integral

An additive interval function is a function [α, β] → I(α, β) that assigns a
number I(α, β) to each ordered pair of points (α, β) in such a way that the
following equality holds for any triple of point α, β, γ ∈ [a, b]:

I(α, γ) = I(α, β) + I(β, γ). (12)

Setting
F(x) = I(a, x)

Examples 9. If f ∈ R[a, b], the function F(x) =
∫ x

a f(t) dt generates via
formula 12 the additive function

I(α, β) =
∫ β

α
f(t) dt

14



Proposition 4.1. Suppose the additive function I[α, β] defined for point
α, β of a closed interval [a, b] is such that there exists a function f ∈ R[a, b]
connected with I as follows: the relation

inf
x∈[α,β]

f(x)(β − α) ≤ I(α, β) ≤ sup
x∈[α,β]

f(x)(β − α)

holds for any closed interval [α, β] such that a ≤ α ≤ β ≤ b. Then

I[a, b] =
∫ b

a
f(x) dx

4.2 Arc Length

Let Γ : [a, b] → R
3 be a smooth path that is defined by r(t) = (x(t), y(t), z(t)), t ∈

[a, b] , and suppose that the velocity v(t) = (ẋ(t), ẏ(t), ż(t)) are continuous,
then

inf
t∈[α,γ]

|v(t)|(γ − α) ≤ l[α, γ] ≤ sup
x∈[α,γ]

|v(t)|(γ − α)

and therefore

l[a, b] =
∫ b

a
|v(t)| dt =

∫ b

a

√
ẋ2(t) + ẏ2(t) + ż2(t) dt

Examples 10. Suppose the point moves according to the law
{

x = R cos 2πt

y = R sin 2πt

over the time interval [0, 1], find the length of the path.

Let us consider the problem of computing the length of the graph of a
function y = f(x) defined on a closed interval [a, b] ⊂ R.

l[a, b] =
∫ b

a

√
1 + [f ′(x)]2 dx

Examples 11. Let we consider the semicircle

y =
√

1 − x2, −1 ≤ x ≤ 1

of the circle x2 + y2 = 1.

Proposition 4.2. If a smooth path ˜Gamma : [α, β] → R
3 is obtained form

a smooth path Γ : [a, b] → R by an admissible change of parameter, then the
lengths of the two paths are equal.

∫ b

a

√
ẋ2(t) + ẏ2(t) + ż2(t) dt =

∫ β

α

√
˙̃x2(τ) + ˙̃y2(τ) + ˙̃z2(τ) dτ

15



Examples 12. Let us find the length of the ellipse defined by the canonical
equation

x2

a2
+

y2

b2
= 1(a > b > 0) (13)

4.3 The Area of a Curvilinear Trapezoid

S[a, b] =
∫ b

a
f(x) dx

Examples 13. Let us compute the area of the ellipse given the canonical
equation of Eq 13

4.4 Volume of a Solid of Revolution

V [a, b] = π

∫ b

a
f 2(x) dx

4.5 Work and Energy

5 Improper Integral

In the preceding section we encountered the need for somewhat broader con-
cept of the Riemann integral. There, in studying a particular problem, we
form an idea of the direction in which this should be done.

5.1 Definition, Examples, and Basic Properties of Im-

proper Integrals

Definition 5.1. Suppose the function x → f(x) is defined on the inter-
val [a, +∞) and integrable on every closed interval [a, b] contained in that
interval. The quantity

∫ +∞

a
f(x) dx = lim

b→+∞

∫ b

a
f(x) dx,

if this limit exists, is called the improper Riemann integral or the im-
proper integral of the function f over the interval [a, +∞).

Examples 14. Let us investigate the values of the parameter α for which
the improper integral ∫ +∞

1

dx

xα

converges, or what is the same, is defined.

16



Definition 5.2. Suppose the function x → f(x) is defined on the interval
[a, B) and integrable on any closed interval [a, b] ⊂ [a, B). The quality

∫ B

a
f(x) dx = lim

b→B−0

∫ b

a
f(x) dx,

if this limit exists, is called the improper integral of f over the interval [a, B).

Examples 15. Let us investigate the values of the parameter α for which
the improper integral ∫ 1

0

dx

xα

converges, or what is the same, is defined.

Examples 16. ∫ 0

−∞
ex dx

Proposition 5.1. Suppose x → f(x) and x → g(x) are functions defined
on an interval [a, ω) and integrable on every closed interval [a, b] ⊂ [a, ω).
Suppose the improper integrals

∫ ω

a
f(x) dx,

∫ ω

a
g(x) dx,

are defined.
Then a) if ω ∈ R and f ∈ R[a, ω], the values of the integral

∫ ω
a f(x) dx

are the same, whether it is as a proper or an improper integral;
b) for any λ1, λ2 ∈ R the function λ1f + λ2g is integrable in the improper

sense on [a, ω) and the following equality holds:
∫ ω

a
(λ1f + λ2g) (x) dx = λ1

∫ ω

a
f(x) dx + λ2

∫ ω

a
g(x) dx

c) if c ∈ [a, ω), then
∫ ω

a
f(x) dx =

∫ c

a
f(x) dx +

∫ ω

c
f(x) dx

d) if ϕ : [α, γ) → [a, ω) is a smooth monotonic mapping with ϕ(α) = a

and ϕ(β) → ω as β → γ, β ∈ [α, γ), then the improper integral of the
function t → (f ◦ϕ)(t)ϕ′(t) over [α, γ) exists and the following equality holds

∫ ω

a
f(x) dx =

∫ γ

α
(f ◦ ϕ)(t)ϕ′(t) dt

If f, g ∈ C(1)[a, ω) and the limit limx→ω(f ·g)(x) exists, then the functions
fg′ and f ′g are either both integrable or both nonintegrable in the improper
sense on [a, ω), and when they are integrable the following equality holds:

∫ ω

a
(f · g′)(x) dx = (f · g)(x)|ωa −

∫ ω

a
(f ′ · g)(x) dx

17



5.2 Convergence of an Improper Integral

a. The Cauchy Criterion The convergence of the improper integral∫ ω

a
f(x) dx is equivalent to the existence of a limit for the function

F(b) =
∫ b

a
f(x) dx

as b → ω, b ∈ [a, ω)

Proposition 5.2. (Cauchy Criterion for Convergence of an improper inte-
gral) If the function x → f(x) is defined on the interval [a, ω) and integrable
on every closed interval [a, b] ⊂ [a, ω), then the integral

∫ ω
a f(x) dx converges

if and only if for every ǫ > 0 there exists B ∈ [a, ω) such that the relation
∣∣∣∣∣

∫ b2

b1

f(x) dx

∣∣∣∣∣ < ǫ

holds for any b1, b2 ∈ [a, ω) satisfying B < b1, B < b2.

b. Absolute Convergence of an Improper Integral

Definition 5.3. The improper integral
∫ ω

a f(x) dx converges absolutely if

the integral
∫ ω

a
|f | dx converges.

Proposition 5.3. Let [a, ω) be a finite or infinite interval and x → f(x)
a function defined on that interval and integrable over every closed interval
[a, b] ⊂ [a, ω], and f(x) ≥ 0, then the improper integral

∫ ω
a f(x) dx exists if

and only if the function

F(b) =
∫ b

a
f(x) dx

is bounded on [a, ω)

Corollary 5.1. (Integral test for convergence of a series) If the func-
tion x → f(x) is defined on the interval [1, +∞], non-negative, non-increasing,
and integrable on each closed interval [1, b] ⊂ [1, +∞), then the series

∞∑

n=1

f(n) = f(1) + f(2) + · · ·

and the integral ∫ +∞

1
f(x) dx

either both converge or both diverge.

18



In particular, one can say that the result of

∫ +∞

1

1

xα
dx

and the series ∞∑

n=1

1

nα

converges only for α > 1.

Theorem 5.2. Comparison theorem Suppose the function x → f(x) and
x → g(x) are defined on the interval [a, ω) and integrable on any closed
interval [a, b] ⊂ [a, ω).

If 0 ≤ f(x) ≤ g(x) on [a, ω), then convergence of g(x) implies convergence
of f(x), and ∫ ω

a
f(x) dx ≤

∫ ω

a
g(x) dx

holds. Divergence of f(x) implies divergence of g(x).

Examples 17.

∫ +∞

1

√
x√

1 + x4
dx,

∫ +∞

1

cos x

x2
dx,

∫ π
2

0
ln sin x dx,

∫ +∞

1
e−x2

dx,

∫ +∞

e

1

ln x
dx,

∫ 1

0

1
√

(1 − x2)(1 − k2x2)
dx,

C. Conditional Convergence of an Improper Integral

Definition 5.4. If an improper integeral converges but not absolutely, we
say that it converges conditionally.

Examples 18. ∫ +∞

π
2

sin x

x
dx

Proposition 5.4. (Abel-Dirichlet test for convergence of an inte-
gral). Let x → f(x) and x → g(x) be functions defined on an interval
[a, ω) and integrable on every closed interval [a, b] ⊂ [a, ω). Suppose that g

is monotonic.
Then a sufficient condition for convergence of the improper integral

∫ ω

a
(f · g)(x) dx
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is that the one of the following pairs of conditions hold:
a1) the integral

∫ ω
a f(x) dx converges,

b1) the function g is bounded on [a, ω).
or
a2) the function F(b) =

∫ b
a f(x) dx is bounded on [a, ω),

b2) the function g(x) tends to zero as x → ω, x ∈ [a, ω).

Examples 19.
∫ 1

e

0

1

xp ln x
dx, p ∈ R

+

Examples 20. ∫ 1

0

1

xp
sin

1

x
dx, (p < 2)
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6 作作作業業業

6.1 證證證明明明題題題

1. 證明：若分割P̃ 是分割P增加若干分點得到的分割，則有：

∑

P̃

ω′
i∆x′

i ≤
∑

P

ωi∆xi

2. 證明：若f在[a, b]上可積，[α, β] ⊂ [a, b], 則f在[α, β]上也可積。

3. 設f, g均為定義在[a, b]上的有界函數，僅在有限個點處f(x) 6= g(x), 證
明：若f在[a, b]上可積，則g在[a, b]上也可積，且有：

∫ b

a
f(x) dx =

∫ b

a
g(x) dx

4. 設f在[a, b]上有界，{an} ⊂ [a, b], lim
n→∞

an = c, 證明：若f在[a, b]上只

有an, n = 1, 2, · · ·為其間斷點，則f在[a, b]上可積。

5. 證明：若f ∈ C[a, b] 且f(x) ≥ 0, ∀x ∈ [a, b] 則以下結果成立：

(a) 如果函數f(x)存在一點f(x0) > 0, x0 ∈ [a, b]，則有：

∫ b

a
f(x) dx > 0

(b) 若
∫ b

a f(x) = 0，則有f(x) ≡ 0

6. 證明若f ∈ C[a, b], f(x) ≥ 0, ∀x ∈ [a, b], 且M = max
[a,b]

f(x),則

lim
n→∞

(∫ b

a
fn(x) dx

) 1

n

= M

7. 證明黎曼函數

f(x) =

{
1
q
, x = p

q
, p, q互質, q > p,

0, x = 0, 1 其它(0,1)內無理數

在區間[0, 1]上可積。

8. 計算下列定積分
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(a)
∫ π

2

0
cos5 x sin 2x dx

(b)
∫ 1

0

√
4 − x2 dx

(c)
∫ a

0
x2

√
a2 − x2 dx(a > 0)

(d)
∫ 1

0

1

(x2 − x + 1)
3

2

dx(a > 0)

(e)
∫ 1

0

1

ex + e−x
dx

(f)
∫ π

2

0

cos x

1 + sin2 x
dx

(g)
∫ 1

0
arcsin x dx

(h)
∫ π

2

0
ex sin x dx

(i)
∫ e

1

e

| ln x| dx

(j)
∫ 1

0
e

√
x dx

(k)
∫ a

0
x2

√
a − x

a + x
dx(a > 0)

(l)
∫ π

2

0

cos x

sin x + cos x
dx

9. 求下列極限

(a) lim
x→0

1

x

∫ x

0
cos t2 dt

(b) lim
x→∞

(∫ x
0 et2

dt
)2

∫ x
0 e2t2 dt

10. 求下列曲線的弧長

(a) y = x
3

2 , 0 ≤ x ≤ 4

(b) x = a cos3 t, y = a sin3 t(a > 0), 0 ≤ t ≤ 2π

(c) r = a sin3 θ

3
(a > 0), 0 ≤ θ ≤ 3π

11. 求下列平面曲線繞旋轉軸所圍成立體的體積

22



(a) y = sin x, 0 ≤ x ≤ π,繞x軸。

(b) x = a(t − sin t), y = a(1 − cos t)(a > 0, 0 ≤ t ≤ 2π), 繞x軸。

(c) r = a(1 + cos θ)(a > 0)，繞極軸。

12. 求下列平面曲線繞指定軸旋轉得到的面積

(a) y = sin x, 0 ≤ x ≤ π,繞x軸。

(b) x = a(t − sin t), y = a(1 − cos t)(a > 0, 0 ≤ t ≤ 2π), 繞x軸。

(c) r = a(1 + cos θ)(a > 0)，繞極軸。

13. 討論下列積分是否收斂？若收斂，則求其極限。

(a)
∫ +∞

0
xe−x2

dx

(b)
∫ +∞

−∞
xe−x2

dx

(c)
∫ +∞

1

1

x2(1 + x)
dx

(d)
∫ +∞

0
e−x sin x dx

(e)
∫ +∞

0

1√
1 + x2

dx

(f)
∫ b

a

1

(x − a)p
dx

(g)
∫ 1

0

1

1 − x2
dx

(h)
∫ 1

0

√
x

1 − x
dx

(i)
∫ 1

0

1

x(ln x)p
dx

14. 討論下列積分的收斂性

(a)
∫ +∞

0

1
3
√

x4 + 1
dx

(b)
∫ +∞

1

x

1 − ex
dx

(c)
∫ +∞

1

x arctan x

x3 + 1
dx
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(d)
∫ +∞

0

xm

xn + 1
dx(m, n ≥ 0)

(e)
∫ 2

0

1

(x − 1)2
dx

(f)
∫ π

0

sin x

x
3

2

dx

(g)
∫ 1

0

1

xα
sin

1

x
dx

(h)
∫ +∞

0
e−x ln x dx

15. 討論下列去窮積分為絕對收斂還是條件收斂

(a)
∫ +∞

1

sin
√

x

x
dx

(b)
∫ +∞

e

ln(ln x)

ln x
sin x dx

24


