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”Calculus required continuity, and continuity was supposed to
require the infinitely little; but nobody could discover what the
infinitely little might be” –Bertrand Russell

In discussing the various aspects of the concept of a real number we remarked
in particular that in measuring real physical quantities we obtain sequences
of approximate values with which one must then work. Such a state of affairs
immediately raises at least the following three questions:

1. What relation does the sequence of approximations so obtained have
to the quantity being measured? We have in mind the mathematical
aspect of the question, that is, we wish to obtain an exact expression of
what is meant in general by the expression ”sequence of approximate
values” and the extent to which such a sequence describes the value of
the quantity. Is the description unambiguous, or can the same sequence
correspond to different values of the measured quantity?

2. How are operations on the approximate values connected with the same
operations on the exact values?

3. How can one determine from a sequence of numbers whether it can be
a sequence of arbitrarily precise approximations of the values of some
quantity?

1 The Limit of a Sequence

1.1 Definitions and Examples

We recall the following definition.

Definition 1.1. A function f : N → X whose domain of definition is the set
of natural numbers is called a sequence.
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The values f(n) of the function f are called the terms of the sequence.
We denote xn := f(n). In this connection the sequence itself is denoted {xn},
and also written as x1, x2, · · · , xn · · · . It is called a sequence in X .

The element xn is called the nth term of the sequence.

Examples 1. 1. f(n) =
1

n
generates the sequence

1

1
,
1

2
,
1

3
, · · ·

2. f(n) =
(−1)n

n
generates the sequence

−1

1
,
1

2
,
−1

3
, · · ·

3. f(n) = (−1)n+1 generates the sequence 1,−1, 1, · · ·

4. f(n) =
n3

n + 1
generates the sequence

13

1 + 1
,

23

2 + 1
,

33

3 + 1
, · · ·

Definition 1.2. A number A ∈ R is called the limit of the numerical

sequence {xn} if for every neighborhood V (A) of A there exists an index N
(depending on V (A)) such that all terms of the sequence having index larger
than N belong to the neighborhood V (A).

We now write these formulations of the definitions of a limit in the lan-
guage of symbolic logic.

lim
n→∞

xn = A := ∀V (A), ∃N ∈ N, ∀n > N, xn ∈ V (A)

, and respectively

lim
n→∞

= A := ∀ǫ > 0, ∃N ∈ N, ∀n > N, |xn −A| < ǫ

.

Definition 1.3. If lim
n→∞

xn = A, we say the sequence {xn} converges to A

and writes xn → A as n → ∞.

A sequence having a limit is said to be convergent. A sequence that does
not have a limit is said to be divergent.

Let us consider some examples.

Examples 2. lim
n→∞

1

n
= 0, since

∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

=
1

n
< ǫ when n > N =

⌊

1

ǫ

⌋

.

Examples 3. lim
n→∞

n + 1

n
= 1.

Examples 4. lim
n→∞

(

1 +
(−1)n

n

)

= 1.

2



Examples 5. lim
n→∞

sin n

n
= 0.

Examples 6. lim
n→∞

1

qn
= 0, if|q| > 1.

Examples 7. The sequence 1, 2, 1
3
, 4, 1

5
, · · · whose n term is xn = n(−1)n is

divergent.

Examples 8. The sequence 1,−1, 1,−1, · · · for which xn = (−1)n, has no
limit.

Examples 9. lim
n→∞

1

nα
= 0.(α > 0)

Examples 10. lim
n→∞

n
√
a = 1.(α > 0)

Examples 11. Let g(n) = n−
⌊n

2

⌋

+
⌊n

3

⌋

−
⌊n

4

⌋

+ · · · . Evaluate lim
n→∞

g(n)

n
.

1.2 Properties of the Limit of a Sequence

1.2.1 General Properties

Definition 1.4. If there exists a number A and an index N such that xn = A
for all n > N , the sequence {xn} will be called ultimately constant.

Definition 1.5. A sequence {xn} is bounded if there exists M such that
|xn| < M for all n ∈ M .

Theorem 1.1. 1) An ultimately constant sequence converges. 2) Any neigh-
borhood of the limit of a sequence contains all but a finite number of terms
of the sequence. 3) A convergent sequence cannot have two different limits.
4) A convergent sequence is bounded.

1.2.2 Passage to the Limit and the Arithmetic Operation

Definition 1.6. If {xn} and {yn} are two numerical sequences,their sum,
product, and quotient are the sequences

{xn + yn}, {xn · yn},
{

xn

yn

}

The quotient, of course, is defined only when yn 6= 0 for all n ∈ N .

3



Theorem 1.2. Let {xn} and {yn} be numerical sequences. If lim
n→∞

xn = A

and lim
n→∞

yn = B, then

a) lim
n→∞

(xn + yn) = A+B.

b) lim
n→∞

(xn · yn) = A ·B.

c) lim
n→∞

(xn \ yn) = A \B, provided that yn 6= 0(n = 1, 2, · · · , ), B 6= 0.

1.2.3 Passage to the Limit and Inequalities

Theorem 1.3. a) Let {xn} and {yn} be numerical sequences. If lim
n→∞

xn = A

and lim
n→∞

yn = B. If A < B, then there exists an index N ∈ N such that

xn < yn for all n > N .

Corollary 1.4. Suppose lim
n→∞

xn = A and lim
n→∞

yn = B. If there exists N

such that for all n > N we have
a) xn > yn, then A ≥ B.
b) xn ≥ yn, then A ≥ B.
c) xn > B, then A ≥ B.
d) xn ≥ B, then A ≥ B.

1.2.4 Questions Involving the Existence of the Limit of a Sequence

a. The Cauchy Criterion

Definition 1.7. A sequence xn is called a fundamental or Cauchy se-
quence if for any ǫ > 0 there exists an index N ∈ N such that |xm − xn| < ǫ
whenever n > N and m > N .

Theorem 1.5. (Cauchy’s convergence criterion) A numerical sequence con-
verges if and only if it is a Cauchy sequence.

Proof.
an := inf

k≥n
xk

bn := sup
k≥n

xk

Since an ≤ bn,
an = inf

k≥n
xk ≤ xk ≤ sup

k≥n
xk = bk

an ≤ A ≤ bn

|xk − A| ≤ bn − an
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Examples 12. The sequence (−1)n, n = 1, 2, · · · has no limit.

Examples 13. Let

x1 = 0, x2 = 0.α1, x3 = 0.α1α2, · · · , xn = 0.α1α2 · · ·αn, · · ·

be a sequence of finite binary fractions in which each successive fraction is
obtained by adjoining a 0 or a 1 to its predecessor. Such a sequence always
converges.

Examples 14. Suppose {xn} satisfies |xn+1 − xn| ≤ k|xn − xn−1|, 0 < k <
1, n = 1, 2, · · · , then {xn} converges.

b. Some Criterions for the Existence of the Limit of Sequences

Definition 1.8. A sequence xn is increasing if xn < xn+1 for all n ∈ N,
nondecreasing if xn ≤ xn+1 for all n ∈ N, nonincreasing if xn ≥ xn+1 for all
n ∈ N, and decreasing if xn > xn+1 for all n ∈ N. Sequences of these four
types are called monotonic sequences.

Definition 1.9. A sequence xn is bounded above if there exists a number M
such that xn < M for all n ∈ N.

Theorem 1.6. (Weierstrass) In order for a non-decreasing sequence to have
a limit it is necessary and sufficient that it is bounded above.

Proof. Let s = supn∈N xn, prove that

lim
n→∞

xn = s

Examples 15.

lim
n→∞

n

qn
= 0, q > 1

Corollary 1.7.

lim
n→∞

n
√
n = 1

Examples 16.

lim
n→∞

n
√
a = 1, for any a > 0

Examples 17.

lim
n→∞

qn

n!
= 0.
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Examples 18.

lim
n→∞

1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn

Examples 19. Suppose x1 > 0, xn+1 = 1 + xn

1+xn
, n = 1, 2, · · · . Find the

limit of xn.

Examples 20. Suppose x1 =
√
a, x2 =

√
a+ x1, · · · , xn =

√
a+ xn−1, · · · ,

for a ∈ R
+. Find the limit limn→∞ xn.

Examples 21. The Fibonacci sequence is:

a1 = 1, a2 = 1, a3 = a1 + a2, · · · , an+1 = an + an−1, · · ·

if we take bn =
an+1

an
, n = 1, 2, · · · . Then find the lim

n→∞
bn.

Proof.

bn =
an+1

an
=

an + an−1

an
= 1 +

an−1

an
= 1 +

1

bn−1

We find that, if bn >

√
5 + 1

2
, then bn+1 <

√
5 + 1

2
and vice versa. Further-

more, we find b2k−1 ∈
(

0,

√
5 + 1

2

)

, b2k ∈
(√

5 + 1

2
,∞
)

b2k+2 − b2k = 1 +
1

1 +
1

b2k

− b2k

=

(√
5 + 1

2
− b2k

)(√
5− 1

2
+ b2k

)

1 + b2k
< 0

b2k+1 − b2k−1 = 1 +
1

1 +
1

b2k−1

− b2k−1

=

(√
5 + 1

2
− b2k−1

)(√
5− 1

2
+ b2k−1

)

1 + b2k−1
> 0

From b2k+2 =
1 + 2b2k
1 + b2k

, we derive,

a =
1 + 2a

1 + a
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a ≈ 0.618

Examples 22. Suppose an = 1 +
1

2p
+

1

3p
+ · · ·+ 1

np
(p > 0), prove that if

p > 1, then the series converge, and if 0 < p ≤ 1, then the sequence does not
converge.

c. The Number e

Examples 23. Let us prove that the limit lim
n→∞

(

1 +
1

n

)n

exists.

In this case the limit is a number denoted by the letter e, after Euler 1.
This number is just as central to analysis as the number 1 to arithmetic or
π to geometry. We begin by verifying the following inequality, sometimes
called Jakob Bernoulli’s inequality. 2

(1 + α)n ≥ 1 + nα for n ∈ N and α > −1

Proof. The assertion is true for n = 1. If it holds for n ∈ N, then it must
hold for n + 1, since we have

(1 + α)n+1 = (1 + α)(1 + α)n ≥ (1 + α)(1 + nα) ≥ 1 + (n + 1)α

We now show that the sequence yn =

(

1 +
1

n

)n+1

is decreasing.

Proof.

yn−1

yn
=

(

1 + 1
n−1

)n

(

1 + 1
n

)n+1 =
n2n

(n2 − 1)n
· n

n + 1
=

(

1 +
1

n2 − 1

)n

· n

n + 1

≥
(

1 +
n

n2 − 1

)

n

n+ 1
>

(

1 +
1

n

)

n

n+ 1
= 1

1
Leonhard Euler:(1707-1783) was a Swiss mathematician, physicist, astronomer, lo-

gician and engineer who was made important and influential discoveries in many branches
of mathematics like infinitesimal calculus and graph theory while also making pioneering
contributions to several branches such as topology and analytic number theory. He is also
introduced much of the modern mathematical terminology and notation, particularly for
mathematical analysis, such as notion of a mathematical function. He is also known for
his work in mechanics, fluid dynamics, optics, astronomy, and music theory.

2Jakob Bernoulli (1654-1705) - Swiss mathematician, a member of the famous Bernoulli
family of scholars. He was one of the founders of the calculus of variations and probability
theory.
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Figure 1: Leonhard Euler.

Since the terms of the sequence are positive, the limit lim
n→∞

(

1 +
1

n

)n+1

ex-

ists. But we then have

lim
n→∞

(

1 +
1

n

)n

= lim
n→∞

(

1 +
1

n

)n+1(

1 +
1

n

)−1

= lim
n→∞

(

1 +
1

n

)n+1

lim
n→∞

1

1 + 1
n

= lim
n→∞

(

1 +
1

n

)n+1

Definition 1.10.

e := lim
n→∞

(

1 +
1

n

)n

.

The Mathematical Constant e. The number e is a mathematical con-
stant that is the base of the natural logarithm: the unique number whose
natural logarithm is equal to one. It is approximately equal to 2.71828, and
is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises
in the study of compound interest. It can also be calculated as the sum of
the infinite series.

e =
∞
∑

n=0

1

n!
=

1

1
+

1

1
+

1

1 · 2 +
1

1 · 2 · 3 + · · · .
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Sometimes called Euler’s number after the Swiss mathematician Leonhard
Euler, e is not to be confused with γ, the Euler–Mascheroni constant, some-
times called simply Euler’s constant. The number e is also known as Napier’s
constant, but Euler’s choice of the symbol e is said to have been retained in
his honor. The constant was discovered by the Swiss mathematician Jacob
Bernoulli while studying compound interest.

The number e is of eminent importance in mathematics, alongside 0, 1,
π and i. All five of these numbers play important and recurring roles across
mathematics, and are the five constants appearing in one formulation of
Euler’s identity.

eiπ + 1 = 0.

where e is Euler’s number, the base of natural logarithms, i is the imaginary
unit, which satisfies i2 = −1, and π is pi, the ratio of the circumference of a
circle to its diameter.

Euler’s identity is named after the Swiss mathematician Leonhard Euler.
It is considered to be an example of mathematical beauty. Like the constant
π, e is irrational: it is not a ratio of integers. Also like π, e is transcendental:
it is not a root of any non-zero polynomial with rational coefficients. The
numerical value of e truncated to 50 decimal places is

2.718281828459045235360287471352662497757247093699.

The first references to the constant were published in 1618 in the table of
an appendix of a work on logarithms by John Napier. However, this did not
contain the constant itself, but simply a list of logarithms calculated from
the constant. It is assumed that the table was written by William Oughtred.
The discovery of the constant itself is credited to Jacob Bernoulli in 1683,
who attempted to find the value of the following expression (which is in fact
e):

lim
n→∞

(

1 +
1

n

)n

.

The first known use of the constant, represented by the letter b, was in cor-
respondence from Gottfried Leibniz to Christiaan Huygens in 1690 and 1691.
Leonhard Euler introduced the letter e as the base for natural logarithms,
writing in a letter to Christian Goldbach of 25 November 1731. Euler started
to use the letter e for the constant in 1727 or 1728, in an unpublished paper
on explosive forces in cannons, and the first appearance of e in a publica-
tion was in Euler’s Mechanica (1736). While in the subsequent years some
researchers used the letter c, e was more common and eventually became the
standard.
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Examples 24. Find the limit of

lim
n→∞

{

1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn

}

The limit of the sequence of Example 24 is called the Euler–Mascheroni
constant.The numerical value of the Euler–Mascheroni constant, to 50 deci-
mal places, is:

0.57721566490153286060651209008240243104215933593992. . . .

The Euer-Mascheroni Constant. The Euler–Mascheroni constant (also
called Euler’s constant) is a mathematical constant recurring in analysis and
number theory, usually denoted by the lowercase Greek letter gamma (γ).

It is defined as the limiting difference between the harmonic series and
the natural logarithm:

γ = lim
n→∞

(

− lnn+

n
∑

k=1

1

k

)

=

∫ ∞

1

(

1

⌊x⌋ − 1

x

)

dx.

Here, ⌊⌋ represents the floor function.
The constant first appeared in a 1734 paper by the Swiss mathematician

Leonhard Euler, titled De Progressionibus harmonicis observationes (En-
eström Index 43). Euler used the notations C and O for the constant. In
1790, Italian mathematician Lorenzo Mascheroni used the notations A and
a for the constant. The notation γ appears nowhere in the writings of ei-
ther Euler or Mascheroni, and was chosen at a later time perhaps because of
the constant’s connection to the gamma function. For example, the German
mathematician Carl Anton Bretschneider used the notation γ in 1835 and
Augustus De Morgan used it in a textbook published in parts from 1836 to
1842.

Examples 25.

lim
n→∞

(

1

n + 1
+

1

n + 2
+ · · ·+ 1

2n

)

= ln 2.

Examples 26.

lim
n→∞

(

1− 1

2
+

1

3
+ · · ·+ (−1)n+1 1

n

)

= ln 2.
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d. Subsequences and Partial Limits of a Sequence

Definition 1.11. If x1, x2, · · · , xn, · · · is a sequence and n1 < n2 < · · · <
nk < · · · an increasing sequence of natural numbers, then the sequence
xn1

, xn2
, · · · , xnk

· · · is a subsequence of the sequence xn.

Lemma 1.8. (Bolzano-Weierstrass) Every bounded sequence of real numbers
contains a convergent subsequence.

Definition 1.12. We shall write xn → +∞ and say that the sequence xn

tends to positive infinity if for each number c there exist N ∈ N such that
xn > c for all n > N .

Lemma 1.9. From each sequence of real numbers one can extract either a
convergent subsequence or a subsequence that tends to infinity.

Let xk be an arbitrary sequence of real numbers. If it is bounded below,
one can consider the sequence in = inf

k≥n
xk.

Definition 1.13. The number l = lim
n→∞

inf
k≥n

xk is called the inferior limit of

the sequence xn and denoted lim
k→∞

xk or lim inf
k→∞

xk. Ifin → +∞, it is said

that the inferior limit of the sequence equals positive infinity, and we write
lim
k→∞

xk = +∞. If the original sequence xn is not bounded below, the we shall

have in = infk≥n xk = −∞ for all n. In that case we say that the inferior
limit of the sequence equals negative infinity and write lim

k→∞

xk = −∞.

Definition 1.14.

lim
k→∞

xk = lim
n→∞

sup
k≥n

xk

Examples 27. xk = (−1)k, k ∈ N.

lim
k→∞

xk = −1

lim
k→∞

xk = 1

Examples 28. xk = k(−1)k .

lim
k→∞

k(−1)k = lim
n→∞

inf
k≥n

k(−1)k = lim
n→infty

0 = 0

lim
k→∞

k(−1)k = lim
n→∞

sup
k≥n

k(−1)k = lim
n→∞

+∞ = +∞
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Examples 29. xk = k, k ∈ N.

lim
k→∞

k = lim
n→∞

inf
k≥n

k = lim
n→∞

n = +∞

lim
k→∞

k = lim
n→∞

sup
k≥n

k = lim
n→∞

+∞ = +∞

Examples 30. xk =
(−1)k

k
, k ∈ N.

lim
k→∞

k = lim
n→∞

inf
k≥n

(−1)k

k
= 0

lim
k→∞

k = lim
n→∞

sup
k≥n

(−1)k

k
= 0

Examples 31. xk = −k2, k ∈ N

lim
k→∞

(−k2) = lim
n→∞

inf
k≥n

(−k2) = −∞

lim
k→∞

(−k2) = lim
n→∞

sup
k≥n

(−k2) = −∞

Examples 32. xk = (−1)kk, k ∈ N

lim
k→∞

((−1)kk) = lim
n→∞

inf
k≥n

((−1)kk) = −∞

lim
k→∞

((−1)kk) = lim
n→∞

sup
k≥n

((−1)kk) = ∞

Definition 1.15. A number (or the symbol ∞ or −∞) is called a partial
limit of a sequence, if the sequence contains a subsequence converging to that
number.

Proposition 1.1. The inferior and superior limits of a bounded sequence
are respectively the smallest and the largest partial limits of the sequence.

Proposition 1.2. For any sequence, the inferior limit is the smallest of its
partial limits and the superior limit is the largest of its partial limits.

Corollary 1.10. A sequence has a limit or tends to negative or positive
infinity if and only if its inferior and superior limits are same.

Corollary 1.11. A sequence converge if and only if every subsequence of it
converge.
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e. Stolz Theorem

Theorem 1.12. Suppose {yn} is strictly increasing and tends to +∞, and

lim
n→∞

xn − xn−1

yn − yn−1
= a(+∞,−∞),

then
lim
n→∞

xn

yn
= a.

Proof. First, let we see the case of a = 0. Because lim
n→∞

xn − xn−1

yn − yn−1

= 0, then

we have ∀ǫ > 0, ∃N1 such that ∀n > N1,

|xn − xn−1| < ǫ (yn − yn−1)

Since lim
n→∞

yn = +∞, we then suppose yN1
> 0, and we have

|xn − xN1
| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xN1+1 − xN1

|
< ǫ [(yn − yn−1) + (yn−1 − yn−2) + · · ·+ (yN1+1 − yN1

)]

= ǫ(yn − yN1
)

Both sides divided by yn, then
∣

∣

∣

∣

xn

yn
− xN1

yn

∣

∣

∣

∣

≤ ǫ

(

1− yN1

yn

)

< ǫ

For fixed N1, we can find N > N1 such that ∀n > N,

∣

∣

∣

∣

xN1

yn

∣

∣

∣

∣

< ǫ, then,

∣

∣

∣

∣

xn

yn

∣

∣

∣

∣

≤ ǫ+

∣

∣

∣

∣

yN1

yn

∣

∣

∣

∣

< 2ǫ

If lim
n→∞

xn − xn−1

yn − yn−1
= a 6= 0, x′

n = xn − ayn, then,

lim
n→∞

x′
n − x′

n−1

yn − yn−1
lim
n→∞

xn − xn−1

yn − yn−1
− a = 0

lim
n→∞

xn

yn
= lim

n→∞

x′
n

yn
+ a = a

Examples 33.

lim
n→∞

1k + 22 + · · ·+ nk

nk+1

Examples 34. Suppose lim
n→∞

an = a, find

lim
n→∞

a1 + 2a2 + · · ·+ nan
n2
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1.2.5 Elementary Facts about Series

a. The Sum of a Series and the Cauchy Criterion for Convergence

of a Series We wish to give a precise meaning to the expression a1 + a2 +
· · ·+ · · · , which expresses the sums of all the terms of the sequence {an}.

2 The Limit of a Function

2.1 Definitions and Examples

Let E be a subset of R and a a limit point of E. Let f : E → R be a
real-valued function defined on E.

Definition 2.1. We shall say (following Cauchy) that the function f : E →
R tends to A as x tends to a, or that A is the limit of f as x tends to a, if
for every ǫ > 0 there exist δ > 0 such that |f(x) − A| < ǫ for every x ∈ E
such that 0 < |x− a| < δ.

In logical symbolism these condition are written as

∀ǫ > 0, ∃δ > 0, ∀x ∈ E and 0 < |x− a| < δ,⇒ |f(x)− A| < ǫ

Examples 35. Let E = R \ 0, and f(x) = x sin
1

x
. We shall verify that

lim
E∋x→0

x sin
1

x
= 0.

Definition 2.2. A deleted neighborhood of a point is a neighborhood of the
point from which the point itself has been removed.

Definition 2.3.

lim
E∋x→a

f(x) = A := ∀VR(A), ∃ŮE(a) ⇒ f
(

ŮE(a)
)

⊂ VR(A).

Examples 36.

lim
x→0

ex = 1

Examples 37.

lim
x→2

x2 = 4
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Examples 38. The function

sgnx =







1 if x > 0
0 if x = 0

−1 if x < 0

is defined on the whole line. We shall show that it has no limit as x tends to
0.

The nonexistence of this limit is expressed by

∀A ∈ R, ∃V (A), ∀Ů(0) ⇒ ∃x ∈ Ů(0), f(x) /∈ V (A).

Examples 39. The function

f(x) = sin
1

x

has no limit as x → 0

Proposition 2.1. The relation lim
E∋x→a

f(x) = A holds if and only if for every

sequence {xn} of points xn ∈ E \ a converging to a, the sequence {f(xn)}
converges to A.

2.2 Properties of the Limit of a Function

We now establish a number of properties of the limit of a function that are
constantly being used. Many of them are analogous to the properties of the
limit of a sequence that have already established.

We call the reader’s attention to the fact that, in order to establish the
properties of the limit of a function, we need only two properties of deleted
neighborhoods of a limit point of a set:

1. ŮE(a) 6= ∅, the deleted neighborhood of the point in E is non-empty.

2. ∀ŮE1
(a), ∀ŮE2

(a), ∃ŮE(a) ⇒ ŮE(a) ⊂ ŮE1
(a) ∩ ŮE2

(a).

a. General Properties of the Limit of a Function

Definition 2.4. A function f : E → R assuming only one value is called
constant. A function f : E → R is called ultimately constant as E ∋ x → a
if it is constant in some deleted neighborhood ŮE(a), where a is a limit point
of E.
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Definition 2.5. A function f : E → R is bounded, bounded above, or
bounded below respectively if there is a number C ∈ R such that |f(x)| < C,
f(x) < C or C < f(x), for all x ∈ E.

Examples 40. The function f(x) =

(

sin
1

x
+ x cos

1

x

)

defined by this for-

mula for x 6= 0 is not bounded on its domain of definition, but it is ultimately
bounded as x → 0.

Theorem 2.1. 1. f : E → R is ultimately the constant A as E ∋ x →
a ⇒ lim

E∋x→a
= A

2. lim
E∋x→a

f(x) = A ⇒ f : E → R is ultimately bounded as E ∋ x → a

3. lim
E∋x→a

f(x) = A1 ∧ lim
E∋x→a

f(x) = A2 ⇒ A1 = A2

b. Passage to Limit and Arithmetic Operations

Definition 2.6. If two numerical-valued functions f : E → R and g : E → R

have a common domain of definition E, their sum, product and quotient are
respectively the functions defined on the same set by the following formulas:

(f + g) (x) := f(x) + g(x),

(f · g) (x) := f(x) · g(x),
(

f

g

)

(x) :=
f(x)

g(x)
.

Proposition 2.2. 1. If α : E → R and β : E → R are infinitesimal func-
tions as E ∋ x → a, then their sum α + β : E → R also infinitesimal
as E ∋ x → a.

2. If α : E → R and β : E → R are infinitesimal functions as E ∋ x → a,
then their product α · β : E → R also infinitesimal as E ∋ x → a.

3. If α : E → R is infinitesimal functions as E ∋ x → a, and β : E → R

is ultimately bounded as E ∋ x → a then their product α · β : E → R

also infinitesimal as E ∋ x → a.

Theorem 2.2. Let f : E → R and g : E → R be two functions with a
common domain of definition. If lim

E∋x→a
f(x) = A and lim

E∋x→a
g(x) = B , then

lim
E∋x→a

(f + g) (x) = A+B,
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lim
E∋x→a

(f · g) (x) = A · B,

lim
E∋x→a

(

f

g

)

(x) =
A

B
., if B 6= 0 and g(x) 6= 0 for x ∈ E

c. Passage to the Limit and Inequalities

Theorem 2.3. 1. Let f : E → R and g : E → R be two functions with a
common domain of definition. If lim

E∋x→a
f(x) = A and lim

E∋x→a
g(x) = B

and A < B, then there exists a deleted neighborhood ŮE(a) of a in E
at each point of which f(x) < g(x).

2. If the relations f(x) ≤ g(x) ≤ h(x) hold for functions f : E → R, g :
E → R and h : E → R ,and if lim

E∋x→a
f(x) = lim

E∋x→a
h(x) = C, then the

limit of g(x) exists as E ∋ x → a ,and lim
E∋x→a

g(x) = C.

Corollary 2.4. Suppose lim
E∋x→a

f(x) = A and lim
E∋x→a

g(x) = B . Let ŮE(a)

be a deleted neighborhood of a in E.

1. If f(x) > g(x) for all x ∈ ŮE(a), then A ≥ B,

2. If f(x) ≥ g(x) for all x ∈ ŮE(a), then A ≥ B,

3. If f(x) > B for all x ∈ ŮE(a), then A ≥ B,

4. If f(x) ≥ B for all x ∈ ŮE(a), then A ≥ B.

d. Two Important Examples

Examples 41.

lim
x→0

sin x

x
= 1

Examples 42.

lim
x→0

(

1 +
1

x

)x

= e

2.3 The General Definition of the Limit of a Function

When proving the Properties of limit of a function, we verified that the only
requirements imposed on the deleted neighborhoods in which our functions
were defined and which arose in the course of the proofs were the properties
below:

17



Definition 2.7. A set B of subsets B ⊂ X of a set X is called a base in X
if the following conditions hold:

1. ∀B ∈ B, B 6= ∅,

2. ∀B1 ∈ B, ∀B2 ∈ B, ∃B ∈ B ⊂ B1 ∩ B2.

In other words, the elements of the collection B are non-empty subsets of
X and the intersection of any two of them always contains an element of the
same collection.

For example, the notation E ∋ x → a + 0(resp.E ∋ x → a − 0) will be
used instead of x → a, x ∈ E ∩ E+

a (resp.x → a, x ∈ E ∩ E−
a ). It means that

x tends to a in E while remaining larger (resp. smaller) than a.

b. The Limit of a Function Over a Base

Definition 2.8. Let f : X → R be a function defined on a set X and B a
base in X. A number A ∈ R is called the limit of the function f over the
base B if for every neighborhood V (A) of A there is an element B ∈ B whose
image f(B) in contained in V (A).

We now repeat the definition of the limit over a base in logical symbols:

lim
B

f(x) = A := ∀V (A), ∃B ∈ B, f(B) ⊂ V (A).

Thus,

lim
x→a−0

f(x) = A := ∀ǫ > 0, ∃δ > 0, ∀x ∈]a− δ, a[,⇒ |f(x)−A| < ǫ.

Definition 2.9. A function f : X → R is ultimately constant over the base
B if there exists a number A ∈ R and an element B ∈ B such that f(x) = A
for all x ∈ B

Definition 2.10. A function f : X → R is ultimately bounded over the base
B if exists a number c > 0 and an element B ∈ B such that |f(x)| < c for
all x ∈ B.

Definition 2.11. A function f : X → R is infinitesimal over the base B if
lim
B

= 0.
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2.4 Existence of the Limit of a Function

a. The Cauchy Criterion

Definition 2.12. The oscillation of a function f : X → R on a set E ⊂ X
is

ω(f, E) := sup
x1,x2∈E

|f(x1)− f(x2)| .

that is, the least upper bound of the absolute value of the difference of
the values of the function at two arbitrary points x1, x2 ∈ E.

Examples 43.

ω
(

x2, [−1, 2]
)

= 4.

Examples 44.

ω (x, [−1, 2]) = 3.

Theorem 2.5. (The Cauchy Criterion for the existence of a limit of a func-
tion) Let X be a set and B a base in X. A function f : X → R has a limit
over the base B if and only if for every ǫ > 0 there exists B ∈ B such that
the oscillation of f on B is less than ǫ.

b. The Relationship Between The Limit Of Function And Sequence

Theorem 2.6. lim
x→x0

f(x) = A if and only if for every sequence {xn} satisfies

xn 6= x0 and lim
n→∞

xn = x0, we have lim
n→∞

f(xn) = A

Examples 45. Prove that the limit lim
x→0

sin
1

x
not exists.

c. The Limit of a Composite Function

Theorem 2.7. (The limit of a composite function) Let Y be a set, BY a base
in Y , and g : Y → R a mapping having a limit over a base BY . Let X be a
set, BX a base in X and f : X → Y a mapping of X into Y such that for
every BY ∈ BY there exists BX ∈ BX whose image f(BX) is contained in
BY .

Under these hypotheses, the composition g ◦ f : X → R of the mappings
f and g is defined and has a limit over the base BX and

lim
BX

(g ◦ f)(x) = lim
BY

g(y)
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Examples 46.

lim
x→0

sin 7x

x
= 7

Theorem 2.8. (Criterion for the existence of a limit of a monotonic func-
tion) A necessary and sufficient condition for a function f : E → R that
is non-decreasing on the set E to have a limit as x → supE, is that it be
bounded above. For this function to have a limit as x → inf E, it is necessary
and sufficient that it is bounded below.

Comparison of the Asymptotic Behavior of Functions We begin
with discussion with some examples to clarify the subject.

Let π(x) be the number of primes not larger than a given number x ∈ R.
Although for any fixed x we can find (if only by explicit enumeration) the
value of π(x), we are nevertheless not in a position to say, for example,
how the function behaves as x → +∞, or, what is the same, what the
asymptotic law of distribution of prime numbers is. We have known sine the
time of Euclid that π(x) → +∞ as x → +∞, but the proof that π(x) grows
approximately like x

lnx
was achieved only in the nineteenth century by P. L.

Chebyshev 3

Definition 2.13. The function f is said to be infinitesimal compared with
the the function g over the base B, and write f = ◦(g) over B if the relation
f(x) = α(x)g(x) holds ultimately over the B, where α(x) is a function that
is infinitesimal over B.

Examples 47.

x2 = ◦(x) as x → 0

Examples 48.

x = ◦(x2) as x → ∞.

Definition 2.14. If f = ◦(g) and g is itself infinitesimal over B, we say that
f is an infinitesimal of higher order that g over B.

Examples 49.

x−2 is an infinitesimal of higher order that x−1 as x → ∞.

Definition 2.15. A function that tends to infinity over a given base is said
to be an infinite function or simply an infinity over the given base.

3P. L. Chebyshev (1821-1894) - outstanding Russian mathematician and specialist in
theoretical mechanics, the founder of a large mathematical school in Russia.
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Definition 2.16. If f and g are infinite functions over B and f = ◦(g) over
the base B, we say that g is a higher order infinity than f over B.

Examples 50.
1

x
= ◦ 1

x2
as x → 0.

Examples 51. We shall show that for a > 1 and any n ∈ Z

lim
x→+∞

xn

ax
= 0

that is, xn = ◦(ax) as x → +∞.

Examples 52. Let us show that

lim
x→∞

xα

ax
= 0,

for a > 1 and any α ∈ R.

Examples 53. Let us show that

lim
x→0

a−1/x

xα
= 0

for a > 1 and any α ∈ R.

Examples 54. Let us show that

lim
x→+∞

loga x

xα
= 0

for α > 0.

Examples 55. Let us show that

xα loga x = ◦(1)

as x → 0, x ∈ R+.

Definition 2.17. Let us agree that the notation f = ©(g) over the base
B (read ”f is big-oh g”) means that the relation f(x) = β(x)g(x) holds
ultimately where β(x) is ultimately bounded over the base B.
Examples 56. Let us show

(

1

x
+ sin x

)

x = ©(x)

as x → ∞
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Definition 2.18. The function f and g are of the same order over B, and
we write f ≍ g over B, if f = ©(g) and g = ©(f) simutantaneously.

Examples 57. Let us show

(2 + sin x)x ≍ x

as x → ∞.

Definition 2.19. If the relation f(x) = γ(x)g(x) holds ultimately over B
where limB = 1, we say that the function f behaves asymptotically like g over
B, or, more briefly, that f is equivalent to g over B.

In this case we shall write f ∼ g over B. The use of the word equivalent
is justified by the relations:

1. f ∼ f over B,

2. f ∼ g ⇒ g ∼ f over B,

3. f ∼ g ∧ g ∼ h ⇒ f ∼ h over B.

It is useful to note that since the relation limB γ(x) = 1 is equivalent
to γ(x) = 1 + α(x), where α(x) → 0 over B, the relation f ∼ g over B is
equivalent to f(x) = g(x) + α(x)g(x) = g(x) + ◦(g(x)) over B.

Examples 58.

x2 + x =

(

1 +
1

x

)

∼ x

as x → ∞.

Examples 59. Since lim
x→0

sin x

x
= 1, we have sin x ∼ x as x → 0, which can

be written as sin x = x+ ◦(x) as x → 0.

Examples 60. Let us show that

ln(1 + x) ∼ x

as x → 0. Thus, ln(1 + x) = x+ ◦(x).

Examples 61. Let us show that

ex = 1 + x+ ◦(x)

as x → 0. Thus, ex − 1 ∼ x as x → 0.
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Examples 62. Let us show that

(1 + x)α = 1 + αx+ ◦(x)

as x → 0.

Proposition 2.3. If f ∼ f̃ , then lim
B

f(x)g(x) = lim
B

f̃(x)g(x), provided one

of these limit exists.

Examples 63. Let us show that

lim
x→0

ln cosx

sin (x2)
=

−1

2
.

Examples 64. Let us show that

√
x2 + x ∼ x

as x → +∞.

Examples 65. Let us show that

lim
x→0

ln (1 + x2)

(e2x − 1) tanx
=

1

2

Examples 66. Let us show that

lim
x→∞

x
(

3
√
x3 + x− 3

√
x3 − x

)

=
2

3

Examples 67. Let us show that

lim
x→0

(cosx)
1

x2 =
1√
e

√
e
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