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Do not ask whether a statement is true until you know what it
means.

-Errett Bishop

1 Fermat’s Lemma and Rolle’s Theorem

Definition 1.1. A point x0 ∈ E ⊂ R is called a local maximum (resp. local
minimum) and the value of a function of a function f : E → R at that
point a local maximum value (resp. local minimum value) if there exists
a neighborhood UE(x0) in E such that at any point x ∈ UE(x0) we have
f(x) ≤ f(x0) (resp. f(x) ≥ f(x0).

Definition 1.2. If the strict inequality f(x) < f(x0)(resp. f(x) > f(x0))
holds at every point x ∈ UE(x0) \ x0, the point x0 is called strict local
maximum (resp. strict local minimum) and the value of the function f :
E → R a strict local maximum value (resp. strict local minimum value).

Definition 1.3. The local maxima and minima are called local extrema and
the values of the function as these extreme values of the function.

Examples 1.

f(x) =

{

x2 for −1 ≤ x < 2
4 for 2 ≤ x

Examples 2. Let f(x) = sin 1
x

on set E = R \ 0.

Lemma 1.1. (Fermat) If a function f : E → R is differentiable at an interior
extremum, x0 ∈ E, then its derivative at x0 is 0 : f ′(x0) = 0.

Remark. 1. Fermat’s theorem thus gives a necessary condition for an
interior extremum of differentiable function. For non-interior extrema
it is generally not true that f ′(x0) 6= 0.
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2. Geometrically this lemma is obvious, since it asserts that an extremum
of a differentiable function the tangent to its graph is horizontal.

3. Physically this lemma means that in motion along a line the velocity
must be zero at the instant when the direction reverses.

Proposition 1.1. (Rolle’s Theorem1) If a function f : [a, b] → R is
continuous on a closed interval [a, b] and differentiable on the open set ]a, b[
and f(a) = f(b), then there exists a point ξ ∈]a, b[ such that f ′(ξ) = 0.

2 The theorems of Lagrange and Cauchy on

finite increments

The following proposition is one of the most frequently used and important
methods of studying numerical-valued functions.

Theorem 2.1. (Lagrange’s finite-increment theorem) If a function f :
[a, b] → R is continuous on a closed interval [a, b] and differentiable on the
open interval ]a, b[, there exists a point ξ ∈]a, b[ such that

f(b) − f(a) = f ′(ξ)(b − a) (1)

Figure 1: Lagrange’s finite-increment theorem

Remark (Remark on Lagrange’s Theorem). (i) In geometric language
Lagrange’s theorem means that at some point (ξ, f(ξ)), where ξ ∈]a, b[

1M.Rolle(1652-1719 French mathematician)
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the tangent to the graph of the function is parallel to the chord joining
the points (a, f(a)) and (b, f(b)), since the slope of the chord equals
f(b)−f(a)

b−a
.

(ii) If x is interpreted as time and f(b)−f(a) as the amount of displacement
over the time b−a of a particle moving along a line, Lagrange’s theorem
says that the velocity at some time ξ ∈]a, b[ is the average velocity.

(iii) We note nevertheless that for motion that is not along a straight line
there may be no average in the sense of Remark. Indeed, suppose the
particle is moving a circle of unit radius at constant angular velocity
ω = 1. Its law of motion, as we know, can be written as

r(t) = (cos t, sin t) .

Then
ȧ(t) = (cos t, sin t)

and
|v| = 1

The particle is at the same pint r(0) = r(2π), the equality means that

r(2π) − r(0) = v(ξ)(2π − 0)

would mean t = 2π. But this is impossible. Even so, we shall learn
that there is still a relation between the displacement over a time in-
terval and velocity. It consists of the fact that the full length of the
path traversed cannot exceed the maximal absolute vale of the velocity
multiplied by the time interval of the displacement.

|r(b) − r(a)| ≤ sup
t∈[a,b]

|ṙ(t)||b − a|. (2)

As will be shown later, this natural inequality does indeed always
hold. It is also called Lagrange’s finite-increment theorem, while
relation1 is often called Lagrange mean value theorem(the role of
the mean in this case is played by both the value f ′(ξ) of the velocity
and by the point ξ between a and b).

(iv) Lagrange’s theorem is important in that it connects the increment of a
function over a finite interval with the derivative. Up to now we have
not had such a theorem on finite increments and have characterized
only the local (infinitesimal) increment of a function in terms of the
derivative or differential at a given point.
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Corollary 2.2. If the derivative of a function in non-negative (resp. positive)
at every point of an open interval, then the function is non-decreasing (resp.
increasing) on that interval.

Corollary 2.3. A function that is continuous on a closed interval [a, b] is
constant on it if and only if its derivative equals zero at every point of the
interval [a, b](or only the open interval (a, b)).

Corollary 2.4. (Darboux theorem) Let f is differentiable on closed interval
[a, b], f ′

+(a) 6= f ′
−(b) and k is a number between f ′

+(a), f ′
−(b), then exist at

least one point ξ ∈ (a, b) such that

f ′(ξ) = k.

Proposition 2.1. (Cauchy’s finite-increment theorem) Let x = x(t) and
y = y(t) be functions that are continuous on a closed interval [a, b] and
differentiable on the open interval ]a, b[. Then there exists a point τ ∈ [a, b]
such that

x′(τ)(y(b) − y(a)) = y′(τ)(x(b) − x(a))

If in addition x′(t) 6= 0 for each t ∈]a, b[, then x(a) 6= x(b) and we have the
equality

y(b) − y(a)

x(b) − x(a)
=

y′(τ)

x′(τ)

Remark. (i) If we regard the pair (x(t), y(t)) as the law of motion of a par-
ticle, then (x′(t), y′(t)) is the velocity vector at time t, and (x(β) − x(α), y(β) − y(α))
is its displacement vector over the time [α, β]. The theorem asserts that
at some instant of time τ ∈ [α, β] these two vectors are colinear.

(ii) Lagrange’s formula can be obtained from Cauchy’s by setting x =
x(t) = t, y(t) = y(x) = f(x), α = a, β = b.

3 Taylor’s Formula

If we are given a function f(x) having derivatives up to order n inclusive at
x0, we can immediately write the polynomial

Pn(x0; x) = Pn(x) = f(x0) +
f ′(x0)

1!
(x − x0) + · · · +

f (n)(x0)

n!
(x − x0)n, (3)

whose derivatives up to order n at the point x0 are the same as as the
corresponding derivatives of f(x) at that point.
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Definition 3.1. The algebraic polynomial given by Eq(3) is the Taylor poly-
nomial of order n of f(x) at x0.

We shall be interested in the value of

f(x) − Pn(x0; x) = rn(x0; x), (4)

of the discrepancy between the polynomial Pn(x) and the function f(x),
which is often called the remainder, more precisely, the nth remainder or the
nth remainder term in Taylor’s formula:

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) + · · · +

f (n)(x0)

n!
(x − x0)n + rn(x0; x)

Theorem 3.1. If the function f is continuous on the closed interval with
end points x0 and x along with its first n derivatives, and it has a derivative
of order n + 1 at the interior points of this interval, then for any function φ

that is continuous on this closed interval and has a nonzero derivative at its
interior points, there exists a point ξ between x0 and x such that

rn(x0; x) =
φ(x) − φ(x0)

φ′(ξ)n!
f (n+1)(ξ)(x − ξ)n (5)

Proof. On the closed interval I with endpoints x0 and x, we consider the
auxiliary function

F (t) = f(x) − P (t; x)

of the argument t. We now write out the definition of the function F (t) in
more detail:

F (t) = f(x) −
[

f(t) +
f ′(t)

1!
(x − t) + · · · +

f (n)(t)

n!
(x − t)n

]

.

We can see that,

F ′(t) = −
[

f ′(t) − f ′(t)

1!
+

f ′′(t)

1!
(x − t) − f ′′(t)

1!
(x − t)

+
f ′′′(t)

2!
(x − t)2 + · · · +

f (n+1)(t)

n!
(x − t)n

]

= −f (n+1)(t)

n!
(x − t)n

Applying Cauchy’s theorem to the pair of functions F (t), φ(t) on the closed
interval [x0, x],

F (x) − F (x0)

φ(x) − φ(x0)
=

F ′(ξ)

φ′(ξ)
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Setting φ(t) = x − t, we obtain the following corollary,

Corollary 3.2. (Cauchy’s formula for the remainder term)

rn(x0; x) =
1

n!
f (n+1)(ξ)(x − ξ)n(x − x0)

A particular elegant formula results if we set φ(t) = (x − t)n+1.

Corollary 3.3. (Lagrange’s form for the remainder term)

rn(x0; x) =
1

(n + 1)!
f (n+1)(ξ)(x − x0)n+1.

Let us consider some examples.

Examples 3. For the function f(x) = ex with x0 = 0 Taylor’s formula has
the form

ex = 1 +
1

1!
x2 +

1

2!
x2 + · · · +

1

n!
xn + rn(0; x)

and the remainder is

rn(0; x) =
1

(n + 1)!
eξxn+1

where |ξ| < |x| . Thus

|rn(0; x)| =
1

(n + 1)!
eξ|x|n+1 <

|x|n+1

(n + 1)!
e|x|.

But for each fixed x ∈ R, if n → ∞, the quantity |x|n+1

(n+1)!
, as we know , tends

to zero. Hence

ex = 1 +
1

1!
x +

1

2!
x2 + · · · +

1

n!
xn + · · · , ∀x ∈ R

Examples 4. The function ax, 0 < a, a 6= 1, similarly:

ax = 1 +
ln a

1!
x +

ln2 a

2!
x2 + · · · +

lnn a

n!
xn + · · ·

Examples 5.

sin x = x − 1

3!
x3 +

1

5!
x5 + · · · +

(−1)n

(2n + 1)!
x2n+1 + · · ·

Examples 6.

cos x = 1 − 1

2!
x2 +

1

4!
x4 + · · · +

(−1)n

(2n)!
x2n + · · · , ∀x ∈ R
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Examples 7.

sinh x = x +
1

3!
x3 +

1

5!
x5 + · · · +

1

(2n + 1)!
x2n+1 + · · · , ∀x ∈ R

Examples 8.

cosh x = 1 +
1

2!
x2 +

1

4!
x4 + · · · +

1

(2n)!
x2n + · · · , ∀x ∈ R

Examples 9. For the function f(x) = ln(1 + x), we have

ln(1 + x) = x − 1

2
x2 +

1

3
x3 + · · · +

(−1)(n−1)

n
xn + rn(0; x).

where

rn(0; x) =
1

n!

(−1)nn!

(1 + ξ)n+1
(x − ξ)nx,

or

rn(0; x) = (−1)nx
(x − ξ)n

(1 + ξ)n

1

(1 + ξ)

where ξ lies between 0 and x.
If |x| < 1, it follows from the condition that ξ lies between 0 and x that

|x − ξ|
|1 + ξ| =

|x| − |ξ|
1 − |ξ| = 1 − 1 − |x|

1 − |ξ| ≤ 1 − 1 − |x|
1 − |0| = |x|.

Thus for |x| < 1
|rn(0; x)| ≤ |x|n+1,

and consequently the following expansion is valid for |x| < 1:

ln(1 + x) = x − 1

2
x2 +

1

3
x3 + · · · +

(−1)n

n
xn + · · ·

Examples 10. For the function (1 + x)α, where α ∈ R, we have f (n)(x) =
α(α − 1)(α − 2) · · · (α − n + 1)(1 + x)α−n, so that the Talylor’s formula at
x0 = 0 for this function has the form

(1+x)α = 1+
α

1!
x+

α(α − 1)

2!
+· · ·+ α(α − 1) · · · (α − n + 1)

n!
xn+rn(0; x) (6)

Using Cauchy’s remainder, we find

rn(0; x) =
α(α − 1) · · · (α − n)

n!
(1 + ξ)α−n−1(x − ξ)nx,
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where ξ lies between x.
If |x| < 1,then, using the estimates, we have

|rn(0; x)| ≤
∣

∣

∣

∣

α

(

1 − α

1

)

· · ·
(

1 − α

n

)
∣

∣

∣

∣

(1 + ξ)α−1 |x|n+1. (7)

When n is increased by 1, the right side of Eq. 7 is multiplied by
∣

∣

∣

∣

(

1 − α

n + 1

)

x

∣

∣

∣

∣

.

But since |x| < 1, we shall have
∣

∣

∣

(

1 − α
n+1

)

x
∣

∣

∣ < q < 1, independently of the

value α, provided |x| < q < 1 and n is sufficiently large.
It follows from this that rm(0; x) → 0 as n → ∞ for α ∈ R and any x in

the open interval |x| < 1:

(1+x)α = 1+
α

1!
x+

α(α − 1)

2!
x2 + · · ·+ α(α − 1) · · · (α − n + 1)

n!
xn + · · · (8)

In this case f(x) = (1 + x)n, we write the follwoing equality:

(1 + x)n = 1 +
α

1!
x +

α(α − 1)

2!
x2 + · · · +

α(α − 1) · · · (α − n + 1)

n!
xn

Definition 3.2. If the function f(x) has derivatives of all orders n ∈ N at a
point x0, the series

f(x0) +
1

1!
f ′(x0)(x − x0) + · · · 1

n!
f (n)(x0)(x − x0)

n + · · ·

is called the Taylor Series of f at the point x0.

It should not be thought that the Taylor series of an infinitely differen-
tiable function converges in some neighborhood of x0, for given any sequence
c0, c1, · · · , cn, · · · of numbers, one can construct (although this is not simple
to do) a function f(x) such that f (n)(x0) = cn, n ∈ N.

It should also not be thought that if the Taylor series converges, it neces-
sarily converges to the function that generated it. A Taylor series converges
to the function that generated it only when the generating function belongs
to the class of so-called analytic function.

Here is Cauchy’s example of a non-analytic function:

f(x) =

{

e−1/x2

, ifx 6= 0
0, ifx = 0

(9)

In conclusion, we discuss a local version of Taylor’s formula. We wish to
choose a polynomial Pn(x) = x0 + c1(x − x0) + · · ·+ cn(x − x0)n so as to have

f(x) = Pn(x) + ◦((x − x0)n)
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Proposition 3.1. If there exists a polynomial Pn(x) = c0 + c1(x − x0) +
· · · + cn(x − x0)n satisfying

f(x) = Pn(x) + ◦((x − x0)
n), (10)

that polynomial is unique.

Proof. Indeed, form Eq. 10 we see that

c0 = lim
x→x0

f(x),

c1 = lim
x→x0

f(x) − c0

x − x0
,

...

cn = lim
x→x0

f(x) − c0 − c1(x − x0) − · · · − cn−1(x − x0)n−1

(x − x0)n

Proposition 3.2. Let E be a closed interval having x0 ∈ R as an endpoint.
If the function f : E → R has derivatives f ′(x0), f ′′(x0), · · · , f (n−1)(x0) up
to order n inclusive at the point x0, then the following representation holds:

f(x) = f ′(x0)+
f ′(x0)

1!
(x−x0)+ · · ·+ f (n)(x0)

n!
(x−x0)n +◦ ((x − x0)

n) . (11)

Since the Taylor polynomial Pn(x − x0) is constructed from the require-
ment that its derivatives up to order n inclusive must coincide with the
corresponding derivatives of the function f at x0.

Lemma 3.4. If a function φ : E → R, defined on closed interval E with
endpoint x0 such that it has derivatives up to order n inclusive at x0 and

φ(x0) = φ′(x0) = · · · = φ(n−1)(x0) = 0

then
φ(x) = ◦ ((x − x0)n)

as x → x0

Let us summaries our results. We have defined the Taylor polynomial

Pn(x0; x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)

2!
(x−x0)2 + · · ·+ f (n)(x0)

n!
(x−x0)n
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written the Taylor formula

f(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)

2!
(x−x0)2+· · ·+f (n)(x0)

n!
(x−x0)n+rn(x0; x)

and obtained the following important specific form of it:

f(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)

2!
(x−x0)2+· · ·+f (n)(x0)

n!
(x−x0)n+

f (n+1)(ξ)

(n + 1)!
(x−x0)n+1

where ξ is a point between x0 and x.
If f has derivatives of orders up to n ≥ 1 inclusive at the point x0, then

f(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)

2!
(x−x0)2+· · ·+f (n)(x0)

n!
(x−x0)n+◦ ((x − x0)n)

In particular, we can now write the following table of asympototic for-
mulas as x → 0

ex = 1 +
1

1!
x +

1

2!
x2 + · · · +

1

n!
xn + ©(xn+1)

cos x = 1 − 1

2!
x2 +

1

4!
x4 + · · · +

(−1)n

(2n)!
x2n + ©(x2n+2)

sinh x = x +
1

3!
x3 +

1

5!
x5 + · · · +

1

(2n + 1)!
x2n+1 + ©(x2n+3)

ln(1 + x) = x − 1

2
x2 +

1

3
x3 + · · · +

(−1)n

n
xn + ©(xn+1)

Examples 11. Show that tan x = x + 1
3
x3 + ◦(x3) as x → 0

Examples 12. Show that ln cos x = −1

2
x2 − 1

12
x4 − 1

45
x6 + ©(x8) as x → 0

Examples 13. Let us find the values of the first six derivatives of the func-
tion ln cos x at x = 0.

Examples 14. Let f(x) be an infinitely differentiable function at the point
x0, and suppose we know the expansion

f ′(x) = c′
0 + c′

1x + · · · + c′
nxn + ©(xn+1)

of its derivatives in a neighborhood of zero. Then, from the uniqueness of
the Taylor expansion we have

(f ′(x))
(k)

(0) = k!c′
k,
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and so f (k+1)(0) = k!c′
k. Thus for the function f(x) itself we have the expan-

sion

f(x) = f(0) +
c′

0

1!
x +

1!c′
1

2!
x2 + · · · +

n!c′
n

(n + 1)!
xn+1 + ©(xn+2).

or, after simplication,

f(x) = f(0) +
c′

0

1
x +

c′
1

2
x2 + · · · +

c′
n

(n + 1)
xn+1 + ©(xn+2).

Examples 15. Let us find the Taylor expansion of the function f(x) =
tan−1 x at 0.

Examples 16. Let us find the Taylor expansion of the function f(x) =
sin−1 x at 0.

Examples 17. Find the limit lim
x→0

tan−1 x − sin x

tan x − sin−1 x
.

Examples 18. Let f be a function that is differentiable n times on an
interval I. Prove the following statements.

1. If f vanishes at n + 1 points of I, there exists a point ξ ∈ I such that
f (n)(ξ) = 0.

2. If x1, x2, · · · xn are points of the interval I, there exist a unique poly-
nomial L(x)(the Lagrange interpolation polynomial) of degree at
most n − 1 such that f(xi) = L(xi), i = 1, 2, · · · , n. In addition, for
x ∈ I there exist a point ξ ∈ I such that

f(x) − L(x) =
(x − x1)(x − x2) · · · (x − xn)

n!
f (n)(ξ).

3. If x1 < x2 < · · · < xp are points of I and ni, 1 ≤ i ≤ p , are natural
numbers such that n1 + n2 + · · · + np = n and f (k)(xi) = 0, 0 ≤ k ≤
ni −1, then there exists a point ξ in the closed interval [x1, xp] at which
f (n−1)(ξ) = 0.

4. There exists a unique polynomial H(x) (the Hermite interpolating poly-
nomial) of degree n − 1 such that f (k)(xi) = H(k)(xi), 0 ≤ k ≤ ni − 1.
Moreover, inside the smallest interval containing the points x and
xi, i = 1, 2, · · · , p, there is a point ξ such that

f(x) = H(x) +
(x − x1)n1 · · · (x − xp)np

n!
f (n)(ξ).

This formula is called the Hermite interpolation formula. The
points x1, x2, · · · xp, are called the interpolation nodes of multiplicity
nirespectively. Special cases of the Hermite interpolation formula are
the Lagrange interpolation formula.
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4 The Study of Functions Using the Methods

of Differential Calculus

4.1 Conditions for a Function to be Monotonic

Proposition 4.1. The following relations hold between the monotonicity
properties of a function f : E → R that is differentiable on an open interval
]a, b[= E and the sign (positivity) of its derivative f ′ on that interval:

f ′(x) > 0 ⇒ f is increasing ⇒ f ′(x) ≥ 0
f ′(x) ≥ 0 ⇒ f is non-decreasing ⇒ f ′(x) ≥ 0
f ′(x) ≡ 0 ⇒ f ≡ const ⇒ f ′(x) ≡ 0
f ′(x) ≤ 0 ⇒ f is non-increasing ⇒ f ′(x) ≤ 0
f ′(x) < 0 ⇒ f is decreasing ⇒ f ′(x) ≤ 0

Examples 19. Let f(x) = x3−3x+2 on R. Then f ′(x) = 3x2−3 = 3(x2−1),
and we can say that the function is increasing on the open interval ]−∞, −1[
, decreasing on ] − 1, 1[, and increasing again on ]1, +∞[.

4.2 Conditions for an Interior Extremum of a Function

Proposition 4.2. In order for a point x0 to be an extremum of a funtion
f : U(x0) → R defined on a neighborhood U(x0) of that point, a necessary
condition is that one of the following two conditions hold: either the function
is not differentiable at x0 or f ′(x0) = 0.

Simple examples show that these necessary conditions are not sufficient.

Examples 20. Let f(x) = x3 on R. Then f ′(0) = 0, but there is no
extremum at x0.

Examples 21. Let

f(x) =

{

x for x > 0
2x for x < 0

Proposition 4.3. (Sufficient conditions for an extremum in terms of the
first derivative). Let f : U(x0) → R be a function defined on a neighborhood
U(x0) of the point x0, which is continuous at the point itself and differentiable
in a deleted neighborhood U(x0)\x0. Let Ů−(x0) = {x ∈ U(x0)|x < x0} and
Ů+(x0) = {x ∈ U(x0)|x > x0}.

Then the following conclusions are valid:

(a) ∀x ∈ Ů−(x0), f ′(x) < 0∧∀x ∈ Ů+(x0), f ′(x) < 0 ⇒ f has no extremum at x0
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(b) ∀x ∈ Ů−(x0), f ′(x) < 0∧∀x ∈ Ů+(x0), f ′(x) > 0 ⇒ x0 is a strict local minimum

(c) ∀x ∈ Ů−(x0), f ′(x) > 0∧∀x ∈ Ů+(x0), f ′(x) < 0 ⇒ x0 is a strict local maximum

(d) ∀x ∈ Ů−(x0), f ′(x) > 0∧∀x ∈ Ů+(x0), f ′(x) > 0 ⇒ f has no extremum at x0

Briefly, but less precisely, one can say that if the derivative changes sign
in passing through the point, then the point is an extremum, while if the
derivative does not change sign, the point is not an extremum.

We remark immediately, however, that these sufficient conditions are not
necessary for an extremum, as one can verify using the following example:

Examples 22.

f(x) =

{

2x2 + x2 sin 1
x

for x 6= 0
0 for x = 0

0

0. 002

0. 004

0. 006

0. 008

0. 01

0. 012

0. 014

- 0. 1 - 0. 05 0 0. 05 0. 1

y

x

Figure 2: figure of Example 22

Since x2 ≤ f(x) ≤ 2x2, it is clear that the function has a strict local
minimum at x0 = 0.

Proposition 4.4. (Sufficient conditions for an extremum in terms of higher-
order derivatives) Suppose a function f : U(x0) → R defined on a neighbor-
hood U(x0) of x0 has derivatives of order up to n inclusive at x0, (n ≥ 1).

If f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0 and f (n)(x0) 6= 0, then there is
no extrmum at x0 if n is odd. If n is even, the point x0 is a local extremum,
in fact a strict local minimum if f (n) > 0 and a strict local maximum if
f (n) < 0.

13



Examples 23. The law of refraction in geometric optics(Snell’s law). Ac-
cording to Fermat’s principle, the actual trajectory of a light ray between two
points is such that the ray requires minimum time to pass from one point to
the other compared with all paths joining the two points.

Examples 24. We shall show that for x > 0

xα − αx + α − 1 ≤ 0, when 0 < α < 1, (12)

xα − αx + α − 1 ≥ 0, when 0 > α or α > 1. (13)

Examples 25. Young’s inequality If a > 0 and b > 0, and the number p

and q such that p 6= 0, 1 and q 6= 0, 1, and
1

p
+

1

q
= 1, then

a
1

p b
1

q ≤ 1

p
a +

1

q
b, if p > 1 (14)

a
1

p b
1

q ≥ 1

p
a +

1

q
b, if p < 1 (15)

and equality holds in formula 14 and 15 only when a = b.

Proof. It suffices to set x = a
b

and α = 1
p
.

Examples 26. Holder’s inequality Let xi, i = 1, 2, · · · n, yi ≥ 0, i =
1, 2, · · · , n and 1

p
+ 1

q
= 1.

Then
n
∑

i=1

xiyi ≤
(

n
∑

i=1

x
p
i

)1/p ( n
∑

i=1

y
q
i

)1/q

for p > 1 (16)

and
n
∑

i=1

xiyi ≥
(

n
∑

i=1

x
p
i

)1/p ( n
∑

i=1

y
q
i

)1/q

for p < 1, p 6= 0 (17)

Examples 27. Minkowski’s inequality Let xi ≥ 0, yi ≥ 0, i = 1, 2, · · · , n.
Then

(

n
∑

i=1

(xi + yi)
p

)1/p

≤
(

n
∑

i=1

x
p
i

)1/p

+

(

n
∑

i=1

y
p
i

)1/p

, when p > 1, (18)

(

n
∑

i=1

(xi + yi)
p

)1/p

≥
(

n
∑

i=1

x
p
i

)1/p

+

(

n
∑

i=1

y
p
i

)1/p

, when p < 1, (19)
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5 Conditions for a function to be Convex

Definition 5.1. A function f : [a, b] → R defined on an open interval ]a, b[⊂
R is convex if the inequality holds

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2) (20)

holds for any points x1, x2 ∈]a, b[ and any numbers α1 ≥ 0, α2 ≥ 0 such that
α1 + α2 = 1. If this inequality is strict whenever x1 6= x2 and α1α2 6= 0 on
]a, b[.

Figure 3: Convex function

Definition 5.2. If the opposite inequality holds for a function f :]a, b[→ R,
that function is said to be concave on the interval ]a, b[, or, more often, convex
upward in the interval, as opposed to a convex function, which is then said
to be convex downward on ]a, b[.

In the relations x = α1x1 + α2x2, α1 + α2 = 1, we have

α1 =
x2 − x

x2 − x1
, α2 =

x − x1

x2 − x1

so that formula 20 can be rewritten as

f(x) ≤ x2 − x

x2 − x1
f(x1) +

x − x1

x2 − x1
f(x2)

Taking account the inequalities x1 < x < x2 and x1 < x2, we then obtain

(x2 − x) f(x1) + (x1 − x2) f(x) + (x − x1) f(x2) ≥ 0

Remarking that x2−x1 = (x2−x)+(x−x1) we obtain from the last inequality,
after elementary transformations

f(x) − f(x1)

x − x1
≤ f(x2) − f(x)

x2 − x1
(21)
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for x1 < x < x2.
Inequality 21 is another way of writing the definition of convexity of

the function f(x) on an open interval ]a, b[. Geometrically, 21 means (see
Figure 3)that the slope of the chord I joining x1, f(x1) to x, f(x) is not larger
than (and in the case of strict convexity is less than) the slope of the chord
II joining x, f(x) to x2, f(x2).

Now let us assume that the function f :]a, b[→ R is differentiable on ]a, b[.
Then, letting x in Eq. 21 tend first to x1, the tend to x2, we obtain

f ′(x1) ≤ f(x2) − f(x1)

x2 − x1

≤ f(x2)

which establishes that the derivative of f is monotonic.
Taking this fact into account, for a strictly convex function we find, using

Lagrange’s theorem, that

f ′(x1) ≤ f ′(ξ1) =
f(x) − f(x1)

x − x1

<
f(x2) − f(x)

x2 − x
= f ′(ξ2) ≤ f ′(x2)

for x1 < ξ1 < x < ξ2 < x2, that is, strict convexity implies that the derivative
is strictly monotonic.

Thus, if a differentiable function f is convex on an open interval ]a, b[,
then f ′ is nondecreasing on ]a, b[, and in the case when f is strictly convex,
its derivative f ′ is increasing on ]a, b[.

These conditions turns out to be not only necessary, but also sufficient
for convexity of a differentiable function.

Proposition 5.1. A necessary and sufficient condition for a function f :
]a, b[→ R that is differentiable on the open interval ]a, b[ to be convex (down-
ward) on that interval is that its derivative f ′ be non-decreasing on ]a, b[. A
strictly increasing f ′ corresponds to a strictly convex function.

Corollary 5.1. A necessary and sufficient condition for a function f :]a, b[→
R that having a second derivative on the open interval ]a, b[ to be convex on
]a, b[ is that f ′′(x) ≥ 0 on that interval. The condition f ′′(x) > 0 on ]a, b[ is
sufficient to guarantee that f is strictly convex.

Examples 28. Let us examine the convex of the following functions:

xα, ax, loga x, sin x

Proposition 5.2. A function f :]a, b[→ R that is differentiable on the open
interval ]a, b[ is convex(downward) on ]a, b[ if and only if its graph contains no
points below any tangent drawn to it. In that case, a necessary and sufficient
condition for strict convexity is that all points of the graph except the point
of tangency lie strictly above the tangent line.

16



Examples 29. Using the proposition to prove that

ex ≥ 1 + x

and this inequality is strict for x 6= 0. Similarly, using the convexity of ln x,
one can verify that

ln x ≤ x − 1

holds for x > 0, the inequality being strict for x 6= 1.

Definition 5.3. Let f : U(x0) → R be a function defined and differentiable
on a neighborhood U(x0) of x0 ∈ R. If the function is convex downward
(resp. upward) on the set Ů−(x0) = {x ∈ U(x0)|x < x0} and convex upward
(resp. downward) on Ů+(x0) = {x ∈ U(x0)|x > x0}, then (x0, f(x0)) is called
an infection point.

An analytic criterion for the abscissa x0 of a point of infection is easy to
surmise. If f(x) is twice differentiable at x0, then since f ′(x) has either a
maximum or minimum at x0, we must have f ′′(x0) = 0.

If the second derivative f ′′(x) is defined on U(x0) and one has one sign
everywhere on Ů−(x0) and the opposite sign on Ů+(x0),so that the point
(x0, f(x0)) is a point of inflection.

Examples 30. When consider the function f(x) = sin x, we shall show that
the abscissas x = πk, k ∈ Z are points of inflection.

Examples 31. It should not be thought that the passing of a curve from
one side of its tangent line to the other at a point is a sufficient condition for
the point to be a inflection point. It may, after all, happen that the curve
does not have any constant convexity on either a left or a right neighborhood
of the point. A example (see Fig. 4) is

f(x) =

{

2x3 + x3 sin 1
x2 for x 6= 0,

0 for x = 0

Proposition 5.3. Jensen’s Inequality If f :]a, b[→ R is a convex function,
x1, x2, · · · , xn are points of ]a, b[, and α1, α2, · · · , αn are nonnegative numbers
such that α1 + α2 + · · · + αn = 1, then

f(α1x1 + α2x2 + · · · + αnxn) ≤ α1f(x1) + α2f(x2) + · · · + αnf(xn)
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Figure 4: Figure of example 31

Examples 32. The function f(x) = ln x is strictly convex upward on the
set of positive numbers. ans so we have

α1 ln x1 + α2 ln x2 + · · · + αn ln xn ≤ ln (α1x1 + α2x2 + · · · + αnxn)

or
xα1

1 xα2

2 · · · xαn

n ≤ α1x1 + α2x2 + αnxn

for xi ≥ 0, i = 1, 2, · · · , n,
∑n

i=1 αi = 1. In partiular, if αi = 1
n
, i = 1, 2, · · · , n,

we obtain the classical inequality

n
√

x1x2 · · · xn ≤ x1 + x2 + · · · + xn

n

Examples 33. Let f(x) = xp, x ≥ 0, p > 1. Since such a funtion is convex,
we have

(

n
∑

i=1

αixi

)p

≤
∑

i=1n

αix
p
i .

Setting q =
p

p − 1
, αi = b

q
i

(

n
∑

i=1

b
q
i

)−1

, and xi = aib
−1/(pi−1)
i

n
∑

i=1

b
q
i here, we

obtain the Holder’s inequality:

n
∑

i=1

aibi ≤
(

n
∑

i=1

a
p
i

)1/p ( n
∑

i=1

a
q
i

)1/q
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6 L’Höspital Role

We now pause to discuss a special, but very useful device for finding the limit
of a ratio of functions, known as L’Hospital 2rule.

Proposition 6.1. Suppose the functions f :]a, b[→ R and g :]a, b[→ R are
differentiable on the open interval ]a, b[ with g′(x) 6= 0 on ]a, b[ and

f ′(x)

g′(x)
→ A as x → a + 0(−∞ ≤ A ≤ +∞),

then
f(x)

g(x)
→ A as x → a + 0

in each of the following two cases:

1. f(x) → 0 ∧ g(x) → 0, as x → a + 0, i

2. g(x) → ∞, as x → a + 0.

A similar assertion holds as x → b − 0.

Proof.
f(x) − f(y)

g(x) − g(y)
=

f ′(ξ)

g′(ξ)

f(x)

g(x)
=

f(y)

g(x)
+

f ′(ξ)

g′(ξ)

(

1 − g(y)

g(x)

)

Examples 34. Find the following limits using L’Hospital rule.

lim
x→0

1 − cos 2x

x2

lim
x→∞

π
2

− tan−1 x

sin 1
x

lim
x→+∞

xa

ebx
, (a > 0, b > 0)

lim
x→0

x ln x

lim
x→0+

lnx 1

x

2G.F.de l’Hospital(1661-1704), French mathematician, a capable student of Johann
Bernoulli.
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lim
x→0

xx

lim
x→ π

2

1 + sin x

1 − cos x

lim
x→∞

x + cos x

x

7 Asymptotic Line

Definition 7.1. The line c0 + c1x is called the asympotote of the graph of
the function y = f(x) as x → −∞(or x → +∞) if

f(x) − (c0 + c1x) = ◦(1) as x → −∞(orx → +∞)

It obviously from the Def.7.1 that

c1 = lim
x→−∞

f(x)

x

and
c0 = lim

x→−∞
(f(x) − c1x)

In general, if f(x) − (c0 + c1x + · · · + cnxn) = 0 as x → −∞, then

cn = lim
x→−∞

f(x)

xn

cn−1 = lim
x→−∞

f(x) − cnxn

xn−1

...

c0 = lim
x→−∞

f(x) − (c1x + c2x2 + · · · + cnxn)

These relations, written out here for x → −∞, are of course also valid in
the case x → +∞ and can be used to describe the asymptotic behavior of
the graph of a function f(x) using the graph of the corresponding algebraic
polynomial c0 + c1x + · · · + cnxn.

Examples 35. The graph of the function

y = x + tan−1(x3 − 1)

is well approximated by the line y = x − π
2
, as x → −∞, and by the line

y = x + π
2
, as x → +∞.
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Figure 5: Graph of logx2−3x−2 2
Figure 6: Graph of sin x2

7.1 Examples of Sketches of Graphs of Functions( With-
out Application of the Differential Calculus)

Examples 36. Let us construct a sketch of the graphs of the functions

h = logx2−3x−2 2

y = sin x2

7.2 The Use of Differential Calculus in Constructing
the Graph of a Function

Examples 37. Construct the graph of the function (see Figure 7)

f(x) = |x + 2|e−1/x
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Figure 7: Graph of the function example 37

22



8 作作作業業業

8.1 第第第一一一部部部分分分：：：微微微分分分中中中值值值定定定理理理

1. 討論下列函數在指定的區間內是否存在一點，使得f ′(ξ) = 0

(a) f(x) =

{

x sin 1
x
, 0 < x ≤ 1

π

0, x = 0

(b) f(x) = |x|, −1 ≤ x ≤ 1.

2. 證明：

(a) 方程x3 − 3x + c = 0(c ∈ R)在區間[0, 1]內不可能有兩個不同的實
根。

(b) 方程xn + px + q = 0(n ∈ Z
+, p, q ∈ R) 當n為偶數是至多有兩個

實根，當n為奇數是至多有三個實根。

3. 證明：

(a) 若函數f在[a, b]上可導，且f ′(x) ≥ m，則

f(b) ≥ f(a) + m(b − a)

(b) 若函數f在[a, b]上可導，且|f ′(x)| ≤ M，則

|f(b) − f(a)| ≤ M(b − a)

4. 應用Lagrange中值定理證明下列不等式：

(a)
b − a

b
< ln

b

a
<

b − a

a
, 0 < a < b.

(b)
h

1 + h2
< arctan h < h, h > 0

5. 應用函數的單調性證明下列不等式：

(a) tan x > x − x3

3
, x ∈

(

0,
π

2

)

(b)
2x

π
< sin x < x, x ∈

(

0,
π

2

)

(c) x − x2

2
< ln(1 + x) < x − x2

2(1 + x)
, x > 0
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8.2 第第第二二二部部部分分分：：：利利利用用用導導導數數數求求求極極極限限限

1. 設函數f在點a處具有二階連續導數，證明：

lim
h→0

f(a + h) + f(a − h) − 2f(a)

h2
= f ′′(a)

2. 設函數f在[a, b]上可導，證明：存在ξ ∈ (a, b)，使得：

2ξ [f(b) − f(a)] = (b2 − a2)f ′(ξ)

3. 求下列不定極限

(1) lim
x→0

ex − 1

sin x

(2) lim
x→ π

6

1 − 2 sin x

cos 3x

(3) lim
x→0

ln(1 + x) − x

cos x − 1

(4) lim
x→0

tan x − x

x − sin x

(5) lim
x→ π

2

tan x − 6

sec x + 5

(6) lim
x→0

(

1

x
− 1

ex − 1

)

(7) lim
x→0

tan xsin x

(8) lim
x→0

x
1

1−x

(9) lim
x→0

(1 + x2)
1

x

(10) lim
x→0+

sin x ln x

(11) lim
x→0

(

1

x2
− 1

sin2 x

)

(12) lim
x→0

(

tan x

x

)

1

x2

(13) lim
x→1

ln cos(x − 1)

1 − sin πx
2

(14) lim
x→+∞

(π − 2 arctan x) (ln x)

(15) lim
x→0+

xsin x
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(16) lim
x→ π

4

(tan x)tan 2x

(17) lim
x→0

(

ln(1 + x)1+x

x2
− 1

x

)

(18) lim
x→0

(

cot x − 1

x

)

(19) lim
x→0

(1 + x)
1

x − e

x

(20) lim
x→+∞

(

π

2
− arctan x

)
1

ln x

8.3 第第第三三三部部部分分分：：：Talor公公公式式式

1. 求下列函數帶佩亞諾型的麥克勞林公式

(a) f(x) =
1√

1 + x
。

(b) f(x) = arctan x到含x5的項。

(c) f(x) = tan x到含x5的項。

2. 利用Taylor公式求下列函數的極限

(a) lim
x→0

ex sin x − x(1 + x)

x3

(b) lim
x→0

[

x − x2 ln
(

1 +
1

x

)]

(c) lim
x→0

1

x

[

1

x
− cot x

]

3. 求下列函數在指定點處帶拉格朗日型余項的n階Taylor公式

(a) f(x) = x3 + 4x2 + 5，在x = 1處。

(b) f(x) =
1

1 + x
，在x = 0處。

8.4 第第第四四四部部部分分分：：：單單單調調調，，，凹凹凹凸凸凸

1. 求下列函數的極值

(a) f(x) = 2x3 − x4

(b) f(x) =
2x

1 + x2
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(c) f(x) =
(ln x)2

x

(d) f(x) = arctan x − 1

2
ln(1 + x2)

2. 證明：若函數f在x0處滿足f ′
+(x0) < 0(> 0), f ′

−(x0) > 0(< 0)，則x0為

函數f的極大值(極小值)點。

3. 證明：設函數f在區間I上連續，並且在I上僅有唯一的極值點x0，證

明若x0為f的極大（小）值點，則x0是f在I上的最大（小）值。

4. 求下列函數在給定區間上的最大最小值

(a) y = x5 − 5x4 + 5x3 + 1, [−1, 2]

(b) y = 2 tan x − tan2 x, [0,
π

2
]

(c) y =
√

x ln x, [0, +∞]

(d) y = |x(x2 − 1)|

(e) y =
x(x2 + 1)

x4 − x2 + 1

5. 求下列函數的凹凸區間及其拐點

(a) y = 2x3 − 3x2 − 36x + 25

(b) y = x +
1

x

(c) y = x2 +
1

x

(d) y = ln(x2 + 1)

(e) y =
1

x2 + 1

6. 應用凸函數的概念證明以下不等式

(a) 對於任意的實數a, b, e
a+b

2 ≤ 1

2
(ea + eb)

(b) 對於任何非負實數a, b, 2 arctan

(

a + b

2

)

≥ arctan a + arctan b
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