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In differential calculus, as we verified on the examples of previous section,
in addition to knowing how to differentiate functions and write relations be-
tween their derivatives, it is also very valuable to know how to find functions
from relations satisfied by their derivatives. The simplest such problem, but,
as will be seen below, a very important one, is the problem of finding a
function F'(x) knowing its derivative F'(x) = f(x).

1 The Primitive and the Indefinite Integral

Definition 1.1. A function F(x) is a primitive of a function f(x) on an
interval if F' is differentiable on the interval and satisfies the equation F'(z) =
f(x), or, what is the same, dF'(z) = f(x)dz.

Examples 1. The function F(x) = tan™!x is a primitive of the function

flz) = ﬁ on the entire real line, since (tan~'z) = 1+1x2.

Examples 2. The function F(x) = cot™" 1 is a primitive of f(x) = ;75 on
the set of positive real numbers and on the set of negative real numbers.

Proposition 1.1. If Fi(z) and Fy(z) are two primitives of f(z) on the same
interval, then the difference F}(x) — Fy(x) is constant on that interval.

Like the operation of taking the differential, the operation of finding a
primitive has the name ”indefinite integration” and the mathematical nota-

tion
[ f@)da 1)
d / fla)de = dF(2) = f(z)dz 2)
/ dF(z) = / Fl(2)dz = F(z) + C (3)

Formulas 2 and 3 establish a reciprocity between operations of differentiation
and indefinite integration.



2 The Basic Methods of Finding a Primitive

The following rules holds:

/au(x) + pu(z)dr = a/u(x)dx + 5/v(x)dx (4)

/(uv)/ dz = /u'vdx + /uv'dx (5)

Proposition 2.1. If [ f(z)dz = F(x)+ C, on an interval, I, and [, — I, is
a smooth (continuously differentiable mapping of the interval )I,, then

[(Fo@)¢(t)dt = (Fop)(t) +C.
3 Primitive of Basic Elementary Functions
(e} — 1 a+1
/ldx:1n|x|+0
T
/ax dr = iax +C
Ina
/ex de=e"+C

/sinxdx = —cosz +C

/cosxdx =sinz +C

1
/ dr =tanx + C

cos?

1
/ dr = —cotx +C

sin? z
arcsinz + C

1
/ﬁdx:{ —arccosz + C

1 arctanx + C
/ dl‘ g _1 ~
1+ 22 —cot™tx+C

/sinhxdx =coshz +C
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/coshxdx =sinhz + C

1
/ﬁdx:tanhijC

cosh” x

1
/7dx:—cothx+C

sinh? z
1

1 11
/7dx:—ln’ Tt
T Rl

3.1 Linearity of the Indefinite Integral

+C

Examples 3.
/a0+a1$+~-~+an$”dx
:ao/ldm+a1/mdx+-~-+an/m”dm
_ 1 2 1 n+1
—a0$+2a1x + +n+1anx
Examples 4.

/(m—i—%)zdx:/(xz—i-%/}—i-%)dx

1 4
- §x3+ gx?’/z +Inljz|+C

3.2 Integration by Parts

/udvzuv—/vdu

Examples 5.

Examples 6.



3.3 Change of Variable in an Indefinite Integral
[ (7o) et = [ Fle)det) = Fe(t) +C

Examples 7.

d(t? +1)
= 1 ?+1)+C
[iiptt=5 e =m0+
Examples 8.
/ sin 2z cos 3zxdx
Examples 9.
/ sin~! zdx
Examples 10.
/ e™ cos bxdx

We could have arrived at this result by using Fuler’s formula and the fact
that the primitive of the function e(®*®)? = 9% cos bx 4 i€%® sin bx is

1 e(a—l—ib)x _ a—ib (at+ib)z
a+1b a? +b?
acosbxr +bsinbr . asinbr +bcosbr .
= e —1
a? + b? a? + b?

It should not conflate the phase "finding a primitive” with the impossible
task of "expressing the primitive of a given elementary function in terms of
elementary functions.

For example, the sine integral Si x is the primitive

Six = / Smxdx

T

of the function % that tends to zero as x — 0.
Similarly, the function

Cia = [,

i

specified by the conditionCiz — 0 as x — 0o is not elementary. The function
Cix is called the cosine integral.

The primitive
lix = / —dx
Inx

is also not elementary. One of the primitives of this function is denoted as
lix and is called logarithmic integral.
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4 Primitive of Rational Functions

b(z)
Q(z)

Let us consider the problem of integrating R(z)dz, where R(x) = is a
ratio of polynomials.
Theorem 4.1. Every polynomial
P(z)=co+crx+ -+ cpa”
of degree n > 1 with complex coefficients has a root in C.
Corollary 4.2. Every polynomial
Pz)=co+crx+ -+ cpa”
of degree n > 1 with complex coefficients admits a representation in the form

P(z)=cp(x —x1) -+ (x — 2)

where z,---,x, € C. This representation is unique up to the order of the
factors.

Corollary 4.3. Every polynomial P(z) = ap + a1z + -+ + a,2" with real
coefficients can be expanded as a product of linear and quadratic polynomials
with real coefficients.

Corollary 4.4. Every root x; of multiplicity k; > 1 of polynomial P(x) is a
root of multiplicity k; — 1 of the derivative P’'(z).

P
Corollary 4.5. a) If Q(z) = (z — x,)" -+ - (z — x,)* and ngg is a proper
x
fraction, there exists a unique representation of the fraction QE i in the form
x

P() _

k) i
b (£ )

b) If P(z) and Q(x) are polynomials with real coefficients and

Q) =(x—z)" - (z—2)"(@® +pix+q)™ (2% + ppz + ¢,)™

P
there exists a unique representation of the proper fraction QE? in the form
x
P([L’) - Ajk - < bjk)x + Cik )
= +
= (Z Goof) T E\ A @t op



If we work in the domain of real numbers, then, without going outside
this domain, we can express every such fraction, as we know from algebra as
a sum

P(z)

Q@) PO Z (Z ﬁ) PR (E ) 6

k=1

We have already integrated a polynomial, so that it remains only to con-
sider the integration of the forms

1 b
/ﬁdxand/ 5 T kd:c
(z —a) (22 + pr +q)

The first of these problems can be solved immediately, since

1 —L(z—a) "'+ C fork#1
— ) Tk
/(x—a)kdz { Injz—al+C for k=1 (7)

With the integral

/ bx + ¢ e
(22 + px + q)F

2
we proceed as follows. We present the polynomial 22 4 px + ¢ as (x + %) +
(q - in), where ¢ — 1p* > 0, since the polynomial 22 + px + ¢ has no real
roots. Setting x + %p =uwu and q — p = a2, we obtain

/ bx + ¢ _/ au+6
(22 + px + q)* (u? + a?)k

where a = a,8 = ¢ — —bp
Next,

/ / u +a
(u2+a2 9 u2+a2

_ 2(1 3 (W2+a®) " 40 fork #£1,
sIn(u?+a?) +C for k=1

and it remains only to study the integral

b= [ 8

u? + a?)



Integrating by parts and making elementary transformations, we have

7 _/ du B U —|—2/€/ w?du
k= (u2 + a2)* - (u? + a2)? (u2 4 a2)k+1

v (u? +a?) — a? u )
-t Qk/ g B = gy M~ 2k

from which we obtain the recursion relation

1 u n 2k —1
2ka? (u? 4+ a?)k  2ka?

Ik+1 = I (9)

which makes it possible to lower the exponent k in the integral 8. But [ is
easy to compute:

d 1 d(% 1
11:/ Y :—/(7)2:—tan_lg+6’. (10)
u+a*  al |, (g) a a
Proposition 4.1. The primitive of any rational function R(z) = % can

be expressed in terms of rational functions and the transcendental functions
In and tan~!. The rational part of the primitive, when placed over a com-
mon denominator, will have a denominator containing all the factors of the
polynomial @Q(x) with multiplicities one less that they have in Q(x).

222 + 5z +5

Examples 11. Calculate / =Dzt 2)dx

T _ 2 6 4 5 5 4 4 3 _ 5 2
Examples 12. Calculate / * vt vt ", 1"
(x —1)%(2* 4+ 1)?

5 Primitive of the Form /R(cos x,sinx)dx

Let R(u,v) be a rational function in v and v, that is a quotient of poly-

P(u,v)

nomials , which are linear combinations of monomials u™v", where

u,v
m=12--- n=12---.
Several methods exist for computing the integral / R(cos x,sin x)dz, one

of which is completely general, although not always the most efficient.



a. We make the change of variable ¢t = tan . Since

1 —tan® % . 2tan %
cosx = -———2, sinw=-——3-,

1+ tan 5 1+ tan 5
Gt dz 2dt

= dr=
2cos? & 1+tan2%

as follows that

g2
/R(cosx,sinx)dzz/R(l £_2 ) 2 dt

14827 14+¢2) 14127

and the problem has been reduced to integrating a rational function.

However, this way leads to a very cumbersome rational function; for that
reason one should keep in mind that in many cases there are other possibilities
for rationalizing the integral.

b. In the case integral of the form /R(C082 x,sin® z)dz or /r(tan z)dz,

where r is rational function, a convenient substitution is ¢ = tan x, since

cos?r = 1 in?x = tan’s
1+ tan?z’ 1+ tanzx
dz dt
dt = =dr=——
cos? x 1+ 2

Carrying out this substitution, we obtain respectively
1 t? dt
R(cos*,sin 2)dz = [ R ,
/ (cos” z,sin” z)dx etk url Eaner

[risanz)de = [ (1) de

c. In the case of integrals of the form

/ R(cos z,sin® z) sin xdz, / R(cos® x,sin z) cos xdz,
One can move the function sin z and cos z into the differential and make the

substitution t = cosx or t = sin x respectively. After these substitution, the
integrals will have the form

—/R(t,l—t2)dt or /R(l — 2, t)dt
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Examples 13.
dx
[y,
3+ sinx

Examples 14.

dz
/ - dx
(sinz + cos x)?

Examples 15.
dx

d
/2sin23x—3cos23m+1 v

Examples 16.
3

cos® &
/ ——duw
sin’ z

6 Primitive of the Form /R(x,y(m))dx.

Let R(z,y) be, as in previous section, a rational function. Let us consider
some special integrals of the form

| Rl y(@)da

First of all, it is clear that if one can make a change of variable x = x(t)
such that both functions = = z(t) and y = y(t) are rational functions of ¢,
then /() is also a rational function and

[ Ray(@)de = [ Ra(t), y(a®)a 0t

that is, the problem will have been reduced to integrating a rational function.
Consider the following special choices of the function y = y(x).

b b
a. Ify={ ﬁ, where n € N, then, setting t" = ar + , we obtain
cr+d cr+d
d-t"—b
$:77y2t7
a—c-th

and the integrand rationalizes.

/g—x_ldx
r+1

Examples 17.



b. Let us now consider the case when y = v ax? + bx + ¢, that is, integrals
of the form
/ R(z,Vaz? + bx + c)dx

By completing the square in the trinomial az?+ bz + ¢ and making a suitable
liner substitution, we reduce the general case to one of the following three
simple cases:

/ R(t, VE T+ 1)dt, / R(t,VEZ —1)dt, / R(t, VI —®)dt (11)

To rationalize these integrals it now suffices to make the following substi-
tutions, respectively!:

V24+1l=tu+1, or V2 +1=tu—1, or Vi2+1=1—u;

2—1=u(t—1), or V2 —1=wu(t+1), or Vt? = 1 =t — u;
V-2 =u(l—1t), or V1—12=u(l+t), or Vt? =1 =tu =+ 1.

Let us verify, for example, that after the first substitution we will have
reduced the first integral to the integral of a rational function.

In fact, if V#2 4+ 1 = tu + 1, then t2 + 1 = t2u? + 2tu + 1, from which we
find

‘o 2u
1 — 2
and then ) )
+u
t224+1=—
+ 1 —wu?

The integrals 11 can also be reduced, by means of the substitutions t =
sinh ,t = cosh p,t = sin p, or t = cos g, respectively, to the following forms:

/ R(sinh ¢, cosh ) cosh @dy, / R(cosh ¢, sinh @) sinh @d,
/ R(sin ¢, cos ¢) cos pdyp, — / R(cos p, sin ) sin pdp.

Examples 18.

dx dx dt
/$+\/l’2+2$+1_/1’4—4/(3;4_1)24_]__/t—1+\/t2+1'

Proof. Setting Vt? +1=u —t. O

!These substitution were proposed long ago by Euler.
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c.Elliptic integrals. Another important class of integrals consists of those

of the form
j/}%tm\/fﬁaﬁ)dx (12)

where P(x) is a polynomial of degree of n > 2. As Abel and Liouville showed,
such an integral cannot in general be expressed in terms of elementary func-
tion.

For n = 3 and n = 4 the integral 12 is called an elliptic integral, and
for n > 4 it is called hyperelliptic.

It can be shown that by elementary substitutions the general elliptic
integral can be reduced to the following three standard forms up to terms
expressible in elementary functions:

dx
/¢(1 — 22)(1 — k2a2) 19)
x?dx
/ V(L —22)(1 — k2?) )
dx (15)

/ (14 ha?)\/(1 - 2?)(1 — k?2?)

where h and k are parameters, the parameter k lying in the interval |0, 1] in
all three cases.

By the substitution = sin ¢ these integrals can be reduced to the fol-
lowing canonical integrals and combinations of them:

=

sin? @
/\/1 — k2 sin? pde (17)

d
/ : (18)
(1 — hsin®p)y/1 — k2sin? @
The integrals 16, 17 and 18 are called respectively the elliptic integral of
first kind, second kind and third kind.

7 Non-elementary Special Functions

The following non-elementary special functions.
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. Bi(z) = / e—dx, the exponential integral.
x

. Si(x) = / Smxdx, the sine integral.
T

. Ci(x) = / cos:cdz’ the cosine integral.
x

cosh x

dx, the hyperbolic cosine integral.

. Chi(z) = /

sinh x

. Shi(z) = /

dx, the hyperbolic sine integral.
x

. S(x) = /sin rdx , the Fresnel integral.

. C(z) = / cos #2dx , the Fresnel integral.

. P(x) = / ¢~**dz , the Euler-Poission integral.

i) = / li—fc , the logarithmic integral.
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8 fE#
8.1 $T§U$%F§J\

1.

[\)

. /(m—%)zdx

/(22 4392 de

w

W

3
| —=d
/\/4—4932 v
2
T
5. /73(1+x2) dz
6. /taandx
7. /sin2xd:)3

g / COS 2% d

cosx —sinx

/de
B =) e

11. /(cosx—i—smm) dz

©

10.

=)

12. /cosx cos 2z dx

4 —4 2
13. / % dx
T

. /|sinx| dz
15. /e“x‘ dx

1

W



8.2 PRAH LK BT s H T HIAERE D

L. /cos(Sx +4)dx

2
/ xe? dx

1
. d
/2x+1 v

4, /(1 + )" de

1 1
. /<\/3—x2+\/1—3x2> de

] /22x+3 dl’

N

w

ot

D

J

./mdx
./de

oo

©

/x sin 22 dx

1
10.
0 / sin?(2z + 7/4) de

1
11, / dz
1+cosx

1
12, / _ dx
1+ sinx

13. /csc rdz

T
14. /*d
V1—2a? !

X
15. / d
4+ 2 v

16./ LI
zlnx

JJ4

17. /mdx

14



18.

19

20.

21.

22.

23.

24.

25.

26

27.

28

29

30

31.

32

33.

3

/(xfjdx
. /mdx
/cotxdx

/ cos® x dx
1
J——
sin z cos x

1
/ dx

/ 2 — 3 d
——dx
2 —3x +8

/ﬂdx
(x4+1)3

a>0)dz

[ =t

/m(a > 0)dx

/\/%dx
/%dx

\/$+1—1d
. Y= dx
vr+1+1

/ arcsin z dz

. /lnxdx

/x2 cosz dx
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34. /ln—xdx

35. /lnx

36. /xarctanxdx

37. /{ln Inx) 4+ 1 dx
ln:)s

38. /arcsmx) dz

39. /(sec r)*d

40. /\/$2 + a?dz(a > 0)

8.3 ﬁTﬂT%ﬁﬁ

L[l (a # 1)

f'(x)
L+ [f(@)]?

f'(x)
3. / o

4. /ef(x)f'(m) da

dz(a # —1)

8.4 K TNIINEES

2 /
z? — 7$—|—12

. d
3 /1—|—m3 o
1
4./
1—|—$4dx
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dx

1
> /(g:— D2 1 1)

r— 2
6./ d
(222 4 22+ 1)? v
1
o —d
7 /5—3(:osx v
1
o ——d
/2+sin2m *
1
Ny "
1+tanx

10

oo

2

xr
] ———d
/\/1+x—x2 v

1
11. /7d
Vi +x !

1 /1—=x
12, /—,/ d
2\V14+z .
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