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ABSTRACT
Empirical mode decomposition aims to decompose the input signal into a small num-
ber of components named intrinsic mode functions with slowly varying amplitudes
and frequencies. In spite of its simplicity and usefulness, however, empirical mode de-
composition lacks solid mathematical foundation. In this paper, we describe a method
to extract the intrinsic mode functions of the input signal using non-stationary Prony
method. The proposed method captures the philosophy of the empirical mode decom-
position but uses a different method to compute the intrinsic mode functions. Having
the intrinsic mode functions obtained, we then compute the spectrum of the input
signal using Hilbert transform. Synthetic and field data validate that the proposed
method can correctly compute the spectrum of the input signal and could be used in
seismic data analysis to facilitate interpretation.

Key words: time-frequency analysis, non-stationary Prony method, intrinsic mode
function, Hilbert transform.

INTRODUCTION

Time–frequency analysis maps a 1D time signal into 2D
time and frequency domains, which can capture the non-
stationary character of seismic data. Time–frequency analysis
is a fundamental tool for seismic data analysis and geological
interpretation (Castagna, Sun and Siegfried 2003; Reine,
van der Baan and Clark 2009; Chen et al. 2014; Liu, Cao
and Chen 2016). Conventional time–frequency methods such
as short-time Fourier transform (Cohen 1989), wavelet trans-
form (Mallat 1989), and S-transform (Stockwell, Mansinha
and Lowe 1996) are under the control of Heisenberg/Gabor
uncertainty principle, which states that we cannot have the en-
ergy arbitrarily located in both time and frequency domains
(Mallat 2009). Moreover, short-time Fourier transform,
wavelet transform, and S-transform are using a windowing
process, which often brings smearing and leakage (Tary et al.

2014). Therefore, spurious frequencies are often generated,
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which will “colour” the real time–frequency map and affect
the interpretation. In recent years, many new methods
have been proposed, such as matching pursuit (Mallat and
Zhang 1993), basis pursuit (Chen, Donoho and Saunders
1998), empirical mode decomposition (Huang et al. 1998;
Chen and Fomel 2015), and the synchrosqueezing wavelet
transform (Daubechies, Lu and Wu 2011) and its variants
such as the synchrosqueezing short-time Fourier transform
(Oberlin, Meignen and Perrier 2014) and the synchrosqueez-
ing S-transform (Huang et al. 2015). The matching pursuit
and basis pursuit methods represent the energies of the input
signal by the energies of atoms found using different meth-
ods, which prevents smearing and leakage, creating highly
localised time–frequency decompositions. The efficiency of
these two methods depends on a predefined dictionary (Tary
et al. 2014). The empirical mode decomposition method
decomposes a signal into symmetric, narrow-band waveforms
named intrinsic mode functions to compress artificial spectra
caused by sudden changes and, therefore, to improve the
time–frequency resolution (Han and van der Baan 2013).
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Figure 1 Synthetic signal.

However, the empirical mode decomposition method also
suffers from mode mixing and splitting problems. In order
to solve the aforementioned problems, alternative methods
were developed based on empirical mode decomposition, i.e.,
ensemble empirical mode decomposition (Wu and Huang
2009) and complete ensemble empirical mode decomposition
(Torres et al. 2011). However, these two methods, like the
empirical mode decomposition method, are still “empirical”
because of their sketchy mathematical justifications. The
synchrosqueezing wavelet transform (Daubechies et al. 2011)
and its variants capture the philosophy of empirical mode
decomposition, but, use a different method to compute the

intrinsic mode functions, providing a rigorous mathematical
framework.

Similar to the Fourier transform, the Prony method
(Prony 1795) decomposes a signal into a series of damped
exponentials or sinusoids in a data-driven manner, which al-
lows for the estimation of frequencies, amplitudes, phases,
and damping components of a signal. Fomel (2013) proposed
the non-stationary Prony method (NPM) based on regularised
non-stationary autoregression. The NPM decomposes a signal
into intrinsic mode functions with controlled smoothness of
amplitudes and frequencies like the empirical mode decompo-
sition does but uses NPM instead. Unlike the Fourier trans-
form, the coefficients of the extracted intrinsic mode func-
tions for the Prony method do not clearly define the energy
distribution for the input signal in the time–frequency do-
main. Therefore, the NPM used by Fomel does not clearly
define a “real” time–frequency map but a “time-component”
map. In this paper, we couple the NPM (Fomel 2013) and the
Hilbert transform to give a time–frequency decomposition.
The proposed method has a rigorous mathematical frame-
work. Furthermore, synthetic and real data tests confirm that
the intrinsic mode functions derived by the proposed method

Figure 2 Components of the synthetic signal in Fig. 1.
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Figure 3 Components of the synthetic signal in Fig. 1 using ensemble empirical mode decomposition.

are smoother with respect to the amplitudes and frequencies
than the intrinsic mode functions of ensemble empirical mode
decomposition (Wu and Huang 2009). Synthetic and real data
tests also confirm that the proposed method has a higher time–
frequency resolution than the ensemble empirical mode de-
composition method. The proposed method can be used to
facilitate seismic interpretation.

THEORY

We give a short description of the theories for the empiri-
cal mode decomposition and Prony methods and the non-
stationary Prony method (NPM). For details of the NPM and
the Prony method, see the Appendix.

Empirical mode decomposition

Empirical mode decomposition is a data-driven method,
which is a powerful tool for non-stationary signal analysis
(Huang et al. 1998). This method decomposes a signal into
slowly varying time-dependent amplitude and phase compo-
nents named intrinsic mode functions. The time–frequency

decomposition for the input signal is attributed to the Hilbert
transform of the intrinsic mode functions extracted by sifting
process (Han and van der Baan 2013). If s(t) is the input sig-
nal, empirical mode decomposition can be written as follows:

s(t) =
K∑

k=1

sk(t) =
K∑

k=1

Ak(t) cos(φk(t)), (1)

where Ak(t) measures amplitude modulation and φk(t) mea-
sures phase oscillation. Each sk(t) has a narrow-band wave-
form and an instantaneous frequency that is smooth and pos-
itive. The empirical mode decomposition method is powerful,
but its mathematical theory is sketchy.

Prony method

Prony method extracts damped complex exponential func-
tions (or sinusoids) from a given signal by solving a set of
linear equations (Prony 1795; Lobos, Rezmer and Schegner
2003; Peter and Plonka 2013; Mitrofanov and Priimenko
2015). The Prony method allows for the estimation of fre-
quencies, amplitudes, and phases of a signal (For details, see
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Figure 4 Components of the synthetic signal in Fig. 1 using NPM.

the Appendix.) Assume that we want to solve the following
problem:

x[n] =
M∑

k=1

Ake
(αk+ jωk)(n−1)�t+ jφk . (2)

If we let hk = Ake
jφk , zk = e(αk+jωk)�t, we derive the concise

form

x[n] =
M∑

k=1

hkzn−1
k . (3)

The above M equations can be written in the following
matrix form:⎡
⎢⎢⎢⎢⎣

z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

...
zM−1

1 zM−1
2 · · · zM−1

M

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

h1

h2

...
hM

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x[1]
x[2]

...
x[M]

⎤
⎥⎥⎥⎥⎦ . (4)

The above zk, k= 1, 2, · · · , M of equation (4) can be
computed by solving a polynomial of the form

P(z) =
M∏

k=1

(z− zk). (5)

Equation (5) can also be written in the following form:

P(z) = a0zM + a1zM−1 + · · · + aM−1z+ aM. (6)

The coefficients ak of the polynomial can be computed
by solving the following equation:

M∑
m=0

amx[n−m] = 0. (7)

We use the method proposed by Toh and Trefethen
(1994) to compute the roots zk of equation (6). If the roots
are solved, hk can be computed using equation (3). Finally,
the components are computed based on the following equa-
tion (see the Appendix):

ck[n] = hkzn−1
k = hkzn−1

k , k= 1, 2, · · · , M. (8)

Non-stationary Prony method

Equation (7) can be written as follows:

M∑
m=1

âmx[n−m] = x[n]. (9)
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(a)

(b)

(c)

Figure 5 (a) Time–frequency map for the syn-
thetic signal in Fig. 1 using local attribute. (b)
Time–frequency map for the synthetic signal in
Fig. 1 using ensemble empirical mode decompo-
sition. (c) Time–frequency map for the synthetic
signal in Fig. 1 using the proposed method.

Figure 6 Synthetic signal.

If âm in equation (9) are time dependent, then we have

M∑
m=1

âm[n]x[n−m] ≈ x[n], (10)

which is an underdetermined linear system. There are many
methods for solving underdetermined linear systems, such as
Tikhonov method (Tikhonov 1963). In this paper, we apply
shaping regularization (Fomel 2007, 2009) to regularise the
underdetermined linear system and obtain (see the Appendix):

â = F−1η, (11)

where â is a vector composed of âm[n], and the elements of
vector η are ηi [n] = S[x∗i [n]x[n]], where xi [n] = x[n− i], x∗i [n]
stands for the complex conjugate of xi [n] and S is the shaping
operator. The elements of matrix F are as follows:

Fi j [n] = σ 2δi j + S
[
x∗i [n]xj [n]− σ 2δi j

]
, (12)

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 85–97
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(a)

(b)

(c)

Figure 7 (a) Time–frequency map for the synthetic
signal in Fig. 6 using local attribute. (b) Time–
frequency map for the synthetic signal in Fig. 6 using
ensemble empirical mode decomposition. (c) Time–
frequency map for the synthetic signal in Fig. 6 using
the proposed method.

Figure 8 Seismic trace from marine survey.

where σ is the regularization parameter. Solving equa-
tion (11), we obtain the coefficients’ vector âm[n] and form
a polynomial as follows:

P(z) = zM + â1[n]zM−1 + · · · + âM[n]. (13)

For the root computation ẑm[n], m= 1, 2, . . . , M of the
above polynomial, we use the method proposed by Toh and
Trefethen (1994). The instantaneous frequency of each differ-
ent component is derived from the following equation:

fm[n] = �
[
arg

(
ẑm[n]
2π�t

)]
. (14)

From the instantaneous frequency, we compute the local
phase according to the following equation:


m[n] = 2π

n∑
k=0

fm[k]�t. (15)

Solve the following equation using a regularised non-
stationary regression method (Fomel 2013):

x[n] =
M∑

m=1

Âm[n]e j
m[n] =
M∑

m=1

cm[n]. (16)
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(a)

(b)

(c)

Figure 9 (a) Time–frequency map for the synthetic
signal in Fig. 8 using local attribute. (b) Time–
frequency map for the synthetic signal in Fig. 8 using
ensemble empirical mode decomposition. (c) Time–
frequency map for the synthetic signal in Fig. 8 using
the proposed method.

Figure 10 Two-dimensional seismic data section.

Finally, the narrow-band intrinsic mode functions cm[n]
are computed based on equation (16)

EXAMPLES

We use synthetic signals and real field data to test the proposed
method.

Benchmark examples

We use a simple synthetic signal to test the proposed method.
Figure 1 is a synthetic signal from Hou and Shi (2013). The
three components of the signal are shown in Fig. 2. Figures 3
and 4 show the intrinsic mode functions extracted by the
ensemble empirical mode decomposition method and the
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(a) (b)

(c) (d)

(e) (f)

Figure 11 (a) 30-Hz slice time–frequency map using the local attribute method. (b) 60-Hz slice time–frequency map using the local attribute
method. (c) 30-Hz slice time–frequency map using the ensemble empirical mode decomposition method. (d) 60-Hz slice time–frequency map
using the ensemble empirical mode decomposition method. (e) 30-Hz slice time–frequency map of the proposed method. (f) 60-Hz slice
time–frequency map of the proposed method.

non-stationary Prony method (NPM). From the figures, we
see that the NPM accurately identifies the three components
that the signal has. The intrinsic mode functions derived by the
NPM are smoother with respect to amplitudes and frequen-
cies compared with the intrinsic mode functions obtained by
ensemble empirical mode decomposition. For ensemble em-
pirical mode decomposition, we repeat the empirical mode
decomposition 25 times with different levels of noise to gen-
erate the ensemble empirical mode decomposition results. The

time–frequency distributions of the input signal are the Hilbert
transform of the intrinsic mode functions. Figure 5 a–c shows
the time–frequency distributions using local attribute (Liu,
Fomel and Chen 2011), ensemble empirical mode decompo-
sition (Wu and Huang 2009), and the proposed method for
the synthetic signal in Fig. 1, respectively. Figure 6 shows an-
other synthetic signal. Figure 7 a–c shows the time–frequency
maps using local attribute (Liu et al. 2011), ensemble em-
pirical mode decomposition (Wu and Huang 2009), and the

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 85–97
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(a) (b)

(c)

Figure 12 (a) Time–frequency cube using the local attribute method. (b) Time–frequency cube using the ensemble empirical mode decomposition
method. (c) Time–frequency cube using the NPM.

proposed method. From the figures, we see that the energy is
compactly spread over the instantaneous frequencies for the
ensemble empirical mode decomposition method. However,
the energy is not steadily distributed for the ensemble em-
pirical mode decomposition method. The proposed method
provides a steady and compact energy distribution, which
sharpens the time–frequency distribution.

Field examples

Figure 8 is a seismic trace from marine survey. Figure 9 a–c
shows the time–frequency distributions of the trace using local
attribute (Liu et al. 2011), ensemble empirical mode decom-
position, and the proposed method. We can see that the en-
ergy distributions for ensemble empirical mode decomposition
and the proposed method are much like each other. Both the

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 85–97
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ensemble empirical mode decomposition and proposed meth-
ods use the Hilbert transform of the intrinsic mode functions
to represent the time–frequency distributions for the input
signal. The results confirm that they both reveal the time–
frequency character of the input signal.

Low-frequency anomalies are often attributed to abnor-
mally high attenuation in gas-filled reservoirs and can be used
as a hydrocarbon indicator (Castagna et al. 2003). The mech-
anisms of low-frequency anomalies associated with hydro-
carbon reservoirs are not clearly understood (Ebrom 2004;
Kazemeini et al. 2009). Figure 10 shows 2D field seismic data.
Figure 11a and b, 11c and d, and 11e and f shows the 30- and
60-Hz constant frequency slices using local attribute, ensem-
ble empirical mode decomposition, and the proposed method,
respectively. From the these figures, we see that there is a low-
frequency anomaly in the upper left part of the data section
indicated by the text boxes “Gas?” for the ensemble empirical
mode decomposition and the proposed methods, which may
correspond to gas presentation.

Figure 12a–c shows the full time–frequency cubes com-
puted using local attribute, ensemble empirical mode de-
composition, and the proposed methods, respectively. The
main panels show constant frequency slices. The right-hand-
side panels show the time–frequency maps of the 150th trace.
The top panels show the time–frequency maps of 0.6-second
time–depth signal. From the right and top side panels, we see
that there is a lot of noise in the high-frequency domain for the
ensemble empirical mode decomposition and local attribute
methods compared with the proposed method.

CONCLUSION

We have to compute the time–frequency map of an input
signal based on the non-stationary Prony method (NPM) cou-
pled with Hilbert spectral analysis. The proposed method is
an empirical mode decomposition-like method but uses NPM
to compute its intrinsic mode functions. Compared with the
Fourier transform, the proposed method is data driven and
needs much less base functions to approximate the original
signal. Since the NPM results in an underdetermined linear
system, we use shaping regularization to regularise it. Regu-
larization makes the intrinsic mode functions smoother with
respect to the amplitudes and frequencies compared with the
intrinsic mode functions of the empirical mode decomposi-
tion. There are many time–frequency methods, but which one
is the best? This is a difficult question to answer. Methods are
good for some type of signals but maybe not good for other
type of signals.

Wang et al. (2014) pointed out that the complexity of em-
pirical mode decomposition/ensemble empirical mode decom-
position is 41NENSn(log2 n) = O(n log n), where n is the data
length and parameters NE and NS are the ensemble and sifting
numbers, respectively. For the NPM, the computation com-
plexity is mainly attributed to the polynomial zero finding.
We used the pseudo-zeros method to compute the pseudo-
spectra of the associated balanced companion matrix (Toh
and Trefethen 1994), which requires approximate N3 works,
where N is the polynomial degree number. Therefore, the total
computation complexity is N3 n

N = nN2, where n is the data
length. In this paper, we choose N = 5, and therefore, the
total computation complexity is approximately 5n2 = O(n).
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APPENDIX

Prony method

Prony method can extract damped complex exponential sig-
nals from given data by solving a set of linear equations (Prony
1795; Lobos et al. 2003; Peter and Plonka 2013; Mitrofanov
and Priimenko 2015). Assume the N complex data samples
x[1], x[2], · · · x[N], we approximate the data by M exponen-
tial functions

x[n] ≈
M∑

k=1

Ake
(αk+jωk)(n−1)�t+jφk , (A-1)

where Ak is the amplitude, �t is the sampling period, αk is
the damping factor, ωk is the angular frequency, and φk is
the initial phase. If we let hk = Ake

jφk , zk = e(αk+jωk)�t, we then
derive the concise form as follows:

x[n] ≈
M∑

k=1

hkzn−1
k . (A-2)

The approximation problem above can be solved based
on the error minimisation

min
N∑

n=1

|ε[n]|2 = min
N∑

n=1

∣∣∣∣∣x[n]−
M∑

k=1

hkzn−1
k

∣∣∣∣∣
2

. (A-3)

This turns out to be a non-linear problem. It can be solved
using Prony method that utilises linear equation solutions. If
there are as many data samples as parameters of the approxi-
mation problem, the above M equation (A-2) can be expressed
as follows:

x[n] =
M∑

k=1

hkzn−1
k . (A-4)
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Equation (A-4) can be written in a matrix form as as
follows:

⎡
⎢⎢⎢⎢⎣

z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

...
zM−1

1 zM−1
2 · · · zM−1

M

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

h1

h2

...
hM

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x[1]
x[2]

...
x[M]

⎤
⎥⎥⎥⎥⎦ . (A-5)

Prony proposed to define the polynomial that has the
above zk, k= 1, 2, · · · , M as its roots (Prony 1795)

P(z) =
M∏

k=1

(z− zk). (A-6)

Equation (A-6) can be rewritten in the following form:

P(z) = a0zM + a1zM−1 + · · · + aM−1z+ aM. (A-7)

Shifting the index on equation (A-4) from n to n−m, and
multiplying by parameter a[m], we derive

M∑
m=0

amx[n−m] =
M∑

k=1

hkzn−M−1
k

M∑
m=0

a[m]zM−m
k . (A-8)

Noticing that zk, k= 1, 2, · · · , M are roots of equation
(A-7) then equation (A-8) an be written as

M∑
m=0

amx[n−m] = 0. (A-9)

Solve equation (A-9) for the polynomial coefficients. In
subsequent steps, we compute the frequencies, damping fac-
tors, and the phases according to Algorithm 1. After all the
parameters are computed, we then compute the components
of the input signal. For details, see Algorithm 1 as follows.

Algorithm 1: Prony method

1: Find coefficients: ak, k= 1, 2, · · · , M←∑M
m=0 amx[n−m] = 0.

2: Find roots: zk, k= 1, 2, · · · , M←∑M
m=0 amzM−m = 0.

3: Compute frequencies: ωk, k= 1, 2, · · · , M← �{arg(
zk

(k−1)�t )},
k= 1, 2, · · · , M.

4: Compute: Akeαk(n−1)�t+jφk , k = 1, 2, · · · , M← x[n] =∑M
k=1 Ake(αk+jωk)(n−1)�t+jφk .

5: Compute components: Ake(αk+jωk)(n−1)�t+jφk .

Non-stationary Prony method and shaping regularization

Equation (A-9) can be rewritten as

M∑
m=1

âmx[n−m] = x[n]. (A-10)

If âm, m= 1, 2, · · · , M in equation (A-10) are time dependent,
then we have

M∑
m=1

âm[n]x[n−m] ≈ x[n], (A-11)

which is underdetermined. There many methods for solving
the underdetermined linear system. For example, Tikhonov
(1963) used the regularization method for making the under-
determined problem well-posed by adding constraints on the
estimated model.

Shaping regularization

Fomel (2007, 2009) introduces shaping regularization in in-
version problem, which regularises the underdetermined lin-
ear system by mapping the model to the space of acceptable
models. Consider a linear system given as Fx = b, where F
is the forward modelling map, x is the model vector, and b
is the data vector. Tikhonov regularization method amounts
to minimise the least square problem as follows: (Tikhonov
1963):

min‖Fx− b‖2 + ε2‖Dx‖2, (A-12)

where D is the regularization operator and ε is a scalar pa-
rameter. The solution for equation (A-12) is

x̂ = (FTF+ ε2DTD)−1FTb, (A-13)

where x̂ is the least square approximated of x and FT is the
adjoint operator. If the forward operator F is simply the iden-
tity operator, the solution of equation (A-13) is as follows:

x̂ = (I+ ε2DTD)−1b, (A-14)

which can be viewed as a smoothing process. If we let

S = (I+ ε2DTD)−1 (A-15)

or

ε2DTD = S−1 − I, (A-16)

substituting equation (A-16) into equation (A-13) yields a so-
lution by shaping regularization:

x̂ = (FTF+ S−1 − I)−1FTb = [I+ S(FTF− I)]−1SFTb. (A-17)
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The forward operator F may have physical units that
require scaling. Introducing scaling λ into F, equation (A-17)
be written as

x̂ = [λ2I+ S(FTF− λ2I)]−1SFTb. (A-18)

If S = HHT with square and invertible H, equation (A-
18) can be written as

x̂ = H[λ2I+HT(FTF− λ2I)H]−1HTFTb. (A-19)

The conjugate gradient algorithm can be used for the
solution of equation (A-19).

Non-stationary Prony method

Equation (A-11) can be written as a matrix form

M∑
m=1

âm(t)xm(t) ≈ d(t), (A-20)

where d(t) = x(t), xm(t) = x(t −m�t) is the time shift of the
input signal x(t) and âm(t) is the time-dependent coefficient.
We solve the underdetermined linear system by using the shap-
ing regularization method. The solution is the following form:

a = F−1η, (A-21)

where a is a vector of â(t), the elements of vector η are

ηi (t) = S [x∗i (t)d(t)] , (A-22)

and the elements of matrix F are

Fi j = σ 2δi j + S
[
x∗i (t)x j (t)− σ 2δi j

]
, (A-23)

where σ is the regularization parameter, S is a shaping oper-
ator, and x∗i (t) stands for the complex conjugate of xi (t). We
can use the conjugate gradient method to find the solution of
the linear system. The NPM (Fomel 2013) can be summarised
as follows:

Algorithm 2: Non-stationary Prony method

1: Find time-dependent coefficients using autoregression method:
âk[n], k= 1, · · · , M←∑M

m=0 âm[n]x[n−m] = 0.
2: Find time-dependent roots: ẑk[n], k= 1, 2, · · · , M←∑M

m=0 âm[n]zM−m = 0.
3: Compute time-dependent frequencies: ω̂k[n], k= 1, · · · , M←
�{arg(

ẑk[n]
�t )}, k= 1, · · · , M.

4: Compute the time-dependent phase: φ̂k[n] =∑n
k=0 ω̂k[n]�t.

5: Compute components using autoregression method: ĉm[n], m=
1, · · ·M← x[n] ≈∑M

m=1 Âm[n]e j φ̂m[n] =∑M
m=1 ĉm[n]

After we decompose the input signal into narrow-band
components, we compute the time–frequency distribution of
the input signal using the Hilbert transform of the intrinsic
mode functions.
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