
Chapter 2

Limits of Functions

In this chapter, we define limits of functions and describe some of their properties.

2.1. Limits

We begin with the ϵ-δ definition of the limit of a function.

Definition 2.1. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that |f(x)− L| < ϵ.

We also denote limits by the ‘arrow’ notation f(x) → L as x → c, and often
leave it to be implicitly understood that x ∈ A is restricted to the domain of f .
Note that we exclude x = c, so the function need not be defined at c for the limit
as x → c to exist. Also note that it follows directly from the definition that

lim
x→c

f(x) = L if and only if lim
x→c

|f(x)− L| = 0.

Example 2.2. Let A = [0,∞) \ {9} and define f : A → R by

f(x) =
x− 9√
x− 3

.

We claim that
lim
x→9

f(x) = 6.

To prove this, let ϵ > 0 be given. For x ∈ A, we have from the difference of two
squares that f(x) =

√
x+ 3, and

|f(x)− 6| =
∣∣√x− 3

∣∣ = ∣∣∣∣ x− 9√
x+ 3

∣∣∣∣ ≤ 1

3
|x− 9|.

Thus, if δ = 3ϵ, then |x− 9| < δ and x ∈ A implies that |f(x)− 6| < ϵ.
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We can rephrase the ϵ-δ definition of limits in terms of neighborhoods. Recall
from Definition 1.16 that a set V ⊂ R is a neighborhood of c ∈ R if V ⊃ (c−δ, c+δ)
for some δ > 0, and (c − δ, c + δ) is called a δ-neighborhood of c. A set U is a
punctured (or deleted) neighborhood of c if U ⊃ (c−δ, c)∪ (c, c+δ) for some δ > 0,
and (c − δ, c) ∪ (c, c + δ) is called a punctured (or deleted) δ-neighborhood of c.
That is, a punctured neighborhood of c is a neighborhood of c with the point c
itself removed.

Definition 2.3. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if and only if for every neighborhood V of L, there is a punctured neighborhood U
of c such that

x ∈ A ∩ U implies that f(x) ∈ V .

This is essentially a rewording of the ϵ-δ definition. If Definition 2.1 holds and
V is a neighborhood of L, then V contains an ϵ-neighborhood of L, so there is a
punctured δ-neighborhood U of c that maps into V , which verifies Definition 2.3.
Conversely, if Definition 2.3 holds and ϵ > 0, let V = (L − ϵ, L + ϵ) be an ϵ-
neighborhood of L. Then there is a punctured neighborhood U of c that maps into
V and U contains a punctured δ-neighborhood of c, which verifies Definition 2.1.

The next theorem gives an equivalent sequential characterization of the limit.

Theorem 2.4. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if and only if
lim

n→∞
f(xn) = L.

for every sequence (xn) in A with xn ̸= c for all n ∈ N such that

lim
n→∞

xn = c.

Proof. First assume that the limit exists. Suppose that (xn) is any sequence in
A with xn ̸= c that converges to c, and let ϵ > 0 be given. From Definition 2.1,
there exists δ > 0 such that |f(x) − L| < ϵ whenever 0 < |x − c| < δ, and since
xn → c there exists N ∈ N such that 0 < |xn − c| < δ for all n > N . It follows that
|f(xn)− L| < ϵ whenever n > N , so f(xn) → L as n → ∞.

To prove the converse, assume that the limit does not exist. Then there is an
ϵ0 > 0 such that for every δ > 0 there is a point x ∈ A with 0 < |x − c| < δ but
|f(x)− L| ≥ ϵ0. Therefore, for every n ∈ N there is an xn ∈ A such that

0 < |xn − c| < 1

n
, |f(xn)− L| ≥ ϵ0.

It follows that xn ̸= c and xn → c, but f(xn) ̸→ L, so the sequential condition does
not hold. This proves the result. �

This theorem gives a way to show that a limit of a function does not exist.
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Figure 1. A plot of the function y = sin(1/x), with the hyperbola y = 1/x

shown in red, and a detail near the origin.

Corollary 2.5. Suppose that f : A → R and c ∈ R is an accumulation point of A.
Then limx→c f(x) does not exist if either of the following conditions holds:

(1) There are sequences (xn), (yn) in A with xn, yn ̸= c such that

lim
n→∞

xn = lim
n→∞

yn = c, but lim
n→∞

f(xn) ̸= lim
n→∞

f(yn).

(2) There is a sequence (xn) in A with xn ̸= c such that limn→∞ xn = c but the
sequence (f(xn)) does not converge.

Example 2.6. Define the sign function sgn : R → R by

sgnx =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

Then the limit

lim
x→0

sgnx

doesn’t exist. To prove this, note that (1/n) is a non-zero sequence such that
1/n → 0 and sgn(1/n) → 1 as n → ∞, while (−1/n) is a non-zero sequence such
that −1/n → 0 and sgn(−1/n) → −1 as n → ∞. Since the sequences of sgn-values
have different limits, Corollary 2.5 implies that the limit does not exist.

Example 2.7. The limit

lim
x→0

1

x
,

corresponding to the function f : R \ {0} → R given by f(x) = 1/x, doesn’t
exist. For example, consider the non-zero sequence (xn) given by xn = 1/n. Then
1/n → 0 but the sequence of values (n) doesn’t converge.

Example 2.8. The limit

lim
x→0

sin

(
1

x

)
,



14 2. Limits of Functions

corresponding to the function f : R \ {0} → R given by f(x) = sin(1/x), doesn’t
exist. (See Figure 1.) For example, the non-zero sequences (xn), (yn) defined by

xn =
1

2πn
, yn =

1

2πn+ π/2

both converge to zero as n → ∞, but the limits

lim
n→∞

f(xn) = 0, lim
n→∞

f(yn) = 1

are different.

2.2. Left, right, and infinite limits

We can define other kinds of limits in an obvious way. We list some of them here
and give examples, whose proofs are left as an exercise. All these definitions can be
combined in various ways and have obvious equivalent sequential characterizations.

Definition 2.9 (Right and left limits). Let f : A → R, where A ⊂ R, and suppose
that c ∈ R is an accumulation point of A. Then (right limit)

lim
x→c+

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

c < x < c+ δ and x ∈ A implies that |f(x)− L| < ϵ,

and (left limit)

lim
x→c−

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

c− δ < x < c and x ∈ A implies that |f(x)− L| < ϵ.

Example 2.10. For the sign function in Example 2.6, we have

lim
x→0+

sgnx = 1, lim
x→0−

sgnx = −1.

Next we introduce some convenient definitions for various kinds of limits involv-
ing infinity. We emphasize that ∞ and −∞ are not real numbers (what is sin∞,
for example?) and all these definition have precise translations into statements that
involve only real numbers.

Definition 2.11 (Limits as x → ±∞). Let f : A → R, where A ⊂ R. If A is not
bounded from above, then

lim
x→∞

f(x) = L

if for every ϵ > 0 there exists an M ∈ R such that

x > M and x ∈ A implies that |f(x)− L| < ϵ.

If A is not bounded from below, then

lim
x→−∞

f(x) = L

if for every ϵ > 0 there exists an m ∈ R such that

x < m and x ∈ A implies that |f(x)− L| < ϵ.
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Sometimes we write +∞ instead of ∞ to indicate that it denotes arbitrarily
large, positive values, while −∞ denotes arbitrarily large, negative values. It follows
from this definition that

lim
x→∞

f(x) = lim
t→0+

f

(
1

t

)
, lim

x→−∞
f(x) = lim

t→0−
f

(
1

t

)
,

and it is often useful to convert one of these limits into the other.

Example 2.12. We have

lim
x→∞

x√
1 + x2

= 1, lim
x→−∞

x√
1 + x2

= −1.

Definition 2.13 (Divergence to ±∞). Let f : A → R, where A ⊂ R, and suppose
that c ∈ R is an accumulation point of A. Then

lim
x→c

f(x) = ∞

if for every M ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) > M,

and

lim
x→c

f(x) = −∞

if for every m ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) < m.

The notation limx→c f(x) = ±∞ is simply shorthand for the property stated
in this definition; it does not mean that the limit exists, and we say that f diverges
to ±∞.

Example 2.14. We have

lim
x→0

1

x2
= ∞, lim

x→∞

1

x2
= 0.

Example 2.15. We have

lim
x→0+

1

x
= ∞, lim

x→0−

1

x
= −∞.

How would you define these statements precisely? Note that

lim
x→0

1

x
̸= ±∞,

since 1/x takes arbitrarily large positive (if x > 0) and negative (if x < 0) values
in every two-sided neighborhood of 0.

Example 2.16. None of the limits

lim
x→0+

1

x
sin

(
1

x

)
, lim

x→0−

1

x
sin

(
1

x

)
, lim

x→0

1

x
sin

(
1

x

)
is ∞ or −∞, since (1/x) sin(1/x) oscillates between arbitrarily large positive and
negative values in every one-sided or two-sided neighborhood of 0.
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Example 2.17. We have

lim
x→∞

(
1

x
− x3

)
= −∞, lim

x→−∞

(
1

x
− x3

)
= ∞.

How would you define these statements precisely and prove them?

2.3. Properties of limits

The properties of limits of functions follow immediately from the corresponding
properties of sequences and the sequential characterization of the limit in Theo-
rem 2.4. We can also prove them directly from the ϵ-δ definition of the limit, and
we shall do so in a few cases below.

2.3.1. Uniqueness and boundedness. The following result might be taken for-
granted, but it requires proof.

Proposition 2.18. The limit of a function is unique if it exists.

Proof. Suppose that f : A → R and c ∈ R is an accumulation point of A ⊂ R.
Assume that

lim
x→c

f(x) = L1, lim
x→c

f(x) = L2

where L1, L2 ∈ R. Then for every ϵ > 0 there exist δ1, δ2 > 0 such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L1| < ϵ/2,

0 < |x− c| < δ2 and x ∈ A implies that |f(x)− L2| < ϵ/2.

Let δ = min(δ1, δ2) > 0. Then, since c is an accumulation point of A, there exists
x ∈ A such that 0 < |x− c| < δ. It follows that

|L1 − L2| ≤ |L1 − f(x)|+ |f(x)− L2| < ϵ.

Since this holds for arbitrary ϵ > 0, we must have L1 = L2. �

Note that in this proof we used the requirement in the definition of a limit
that c is an accumulation point of A. The limit definition would be vacuous if it
was applied to a non-accumulation point, and in that case every L ∈ R would be a
limit.

Definition 2.19. A function f : A → R is bounded on B ⊂ A if there exists M ≥ 0
such that

|f(x)| ≤ M for every x ∈ B.

A function is bounded if it is bounded on its domain.

Equivalently, f is bounded on B if f(B) is a bounded subset of R.

Example 2.20. The function f : (0, 1] → R defined by f(x) = 1/x is unbounded,
but it is bounded on any interval [δ, 1] with 0 < δ < 1. The function g : R → R
defined by g(x) = x2 is unbounded, but is it bounded on any finite interval [a, b].

If a function has a limit as x → c, it must be locally bounded at c, as stated in
the next proposition.



2.3. Properties of limits 17

Proposition 2.21. Suppose that f : A → R and c is an accumulation point of A.
If limx→c f(x) exists, then there is a punctured neighborhood U of c such that f is
bounded on A ∩ U .

Proof. Suppose that f(x) → L as x → c. Taking ϵ = 1 in the definition of the
limit, we get that there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that |f(x)− L| < 1.

Let U = (c − δ, c) ∪ (c, c + δ), which is a punctured neighborhood of c. Then for
x ∈ A ∩ U , we have

|f(x)| ≤ |f(x)− L|+ |L| < 1 + |L|,

so f is bounded on A ∩ U . �

2.3.2. Algebraic properties. Limits of functions respect algebraic operations.

Theorem 2.22. Suppose that f, g : A → R, c is an accumulation point of A, and
the limits

lim
x→c

f(x) = L, lim
x→c

g(x) = M

exist. Then

lim
x→c

kf(x) = kL for every k ∈ R,

lim
x→c

[f(x) + g(x)] = L+M,

lim
x→c

[f(x)g(x)] = LM,

lim
x→c

f(x)

g(x)
=

L

M
if M ̸= 0.

Proof. We prove the results for sums and products from the definition of the limit,
and leave the remaining proofs as an exercise. All of the results also follow from
the corresponding results for sequences.

First, we consider the limit of f + g. Given ϵ > 0, choose δ1, δ2 such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L| < ϵ/2,

0 < |x− c| < δ2 and x ∈ A implies that |g(x)−M | < ϵ/2,

and let δ = min(δ1, δ2) > 0. Then 0 < |x− c| < δ implies that

|f(x) + g(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ϵ,

which proves that lim(f + g) = lim f + lim g.

To prove the result for the limit of the product, first note that from the local
boundedness of functions with a limit (Proposition 2.21) there exists δ0 > 0 and
K > 0 such that |g(x)| ≤ K for all x ∈ A with 0 < |x− c| < δ0. Choose δ1, δ2 > 0
such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L| < ϵ/(2K),

0 < |x− c| < δ2 and x ∈ A implies that |g(x)−M | < ϵ/(2|L|+ 1).
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Let δ = min(δ0, δ1, δ2) > 0. Then for 0 < |x− c| < δ and x ∈ A,

|f(x)g(x)− LM | = |(f(x)− L) g(x) + L (g(x)−M)|
≤ |f(x)− L| |g(x)|+ |L| |g(x)−M |

<
ϵ

2K
·K + |L| · ϵ

2|L|+ 1

< ϵ,

which proves that lim(fg) = lim f lim g. �

2.3.3. Order properties. As for limits of sequences, limits of functions preserve
(non-strict) inequalities.

Theorem 2.23. Suppose that f, g : A → R and c is an accumulation point of A.
If

f(x) ≤ g(x) for all x ∈ A,

and limx→c f(x), limx→c g(x) exist, then

lim
x→c

f(x) ≤ lim
x→c

g(x).

Proof. Let
lim
x→c

f(x) = L, lim
x→c

g(x) = M.

Suppose for contradiction that L > M , and let

ϵ =
1

2
(L−M) > 0.

From the definition of the limit, there exist δ1, δ2 > 0 such that

|f(x)− L| < ϵ if x ∈ A and 0 < |x− c| < δ1,

|g(x)−M | < ϵ if x ∈ A and 0 < |x− c| < δ2.

Let δ = min(δ1, δ2). Since c is an accumulation point of A, there exists x ∈ A such
that 0 < |x− a| < δ, and it follows that

f(x)− g(x) = [f(x)− L] + L−M + [M − g(x)]

> L−M − 2ϵ

> 0,

which contradicts the assumption that f(x) ≤ g(x). �

Finally, we state a useful “sandwich” or “squeeze” criterion for the existence of
a limit.

Theorem 2.24. Suppose that f, g, h : A → R and c is an accumulation point of
A. If

f(x) ≤ g(x) ≤ h(x) for all x ∈ A

and
lim
x→c

f(x) = lim
x→c

h(x) = L,

then the limit of g(x) as x → c exists and

lim
x→c

g(x) = L.
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We leave the proof as an exercise. We often use this result, without comment,
in the following way: If

0 ≤ f(x) ≤ g(x) or |f(x)| ≤ g(x)

and g(x) → 0 as x → c, then f(x) → 0 as x → c.

It is essential for the bounding functions f , h in Theorem 2.24 to have the same
limit.

Example 2.25. We have

−1 ≤ sin

(
1

x

)
≤ 1 for all x ̸= 0

and
lim
x→0

(−1) = −1, lim
x→0

1 = 1,

but

lim
x→0

sin

(
1

x

)
does not exist.


