
Chapter 6

Power Series

Power series are one of the most useful type of series in analysis. For example,
we can use them to define transcendental functions such as the exponential and
trigonometric functions (and many other less familiar functions).

6.1. Introduction

A power series (centered at 0) is a series of the form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + . . . .

where the an are some coefficients. If all but finitely many of the an are zero,
then the power series is a polynomial function, but if infinitely many of the an are
nonzero, then we need to consider the convergence of the power series.

The basic facts are these: Every power series has a radius of convergence 0 ≤
R ≤ ∞, which depends on the coefficients an. The power series converges absolutely
in |x| < R and diverges in |x| > R, and the convergence is uniform on every interval
|x| < ρ where 0 ≤ ρ < R. If R > 0, the sum of the power series is infinitely
differentiable in |x| < R, and its derivatives are given by differentiating the original
power series term-by-term.

Power series work just as well for complex numbers as real numbers, and are
in fact best viewed from that perspective, but we restrict our attention here to
real-valued power series.

Definition 6.1. Let (an)
∞
n=0 be a sequence of real numbers and c ∈ R. The power

series centered at c with coefficients an is the series

∞∑
n=0

an(x− c)n.
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74 6. Power Series

Here are some power series centered at 0:
∞∑

n=0

xn = 1 + x+ x2 + x3 + x4 + . . . ,

∞∑
n=0

1

n!
xn = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + . . . ,

∞∑
n=0

(n!)xn = 1 + x+ 2x2 + 6x3 + 24x4 + . . . ,

∞∑
n=0

(−1)nx2
n

= x− x2 + x4 − x8 + . . . ;

and here is a power series centered at 1:
∞∑

n=1

(−1)n+1

n
(x− 1)n = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + . . . .

The power series in Definition 6.1 is a formal expression, since we have not said
anything about its convergence. By changing variables x 7→ (x− c), we can assume
without loss of generality that a power series is centered at 0, and we will do so
when it’s convenient.

6.2. Radius of convergence

First, we prove that every power series has a radius of convergence.

Theorem 6.2. Let
∞∑

n=0

an(x− c)n

be a power series. There is an 0 ≤ R ≤ ∞ such that the series converges absolutely
for 0 ≤ |x − c| < R and diverges for |x − c| > R. Furthermore, if 0 ≤ ρ < R, then
the power series converges uniformly on the interval |x− c| ≤ ρ, and the sum of the
series is continuous in |x− c| < R.

Proof. Assume without loss of generality that c = 0 (otherwise, replace x by x−c).
Suppose the power series

∞∑
n=0

anx
n
0

converges for some x0 ∈ R with x0 ̸= 0. Then its terms converge to zero, so they
are bounded and there exists M ≥ 0 such that

|anxn0 | ≤M for n = 0, 1, 2, . . . .

If |x| < |x0|, then

|anxn| = |anxn0 |
∣∣∣∣ xx0

∣∣∣∣n ≤Mrn, r =

∣∣∣∣ xx0
∣∣∣∣ < 1.

Comparing the power series with the convergent geometric series
∑
Mrn, we see

that
∑
anx

n is absolutely convergent. Thus, if the power series converges for some
x0 ∈ R, then it converges absolutely for every x ∈ R with |x| < |x0|.
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Let

R = sup
{
|x| ≥ 0 :

∑
anx

n converges
}
.

If R = 0, then the series converges only for x = 0. If R > 0, then the series
converges absolutely for every x ∈ R with |x| < R, because it converges for some
x0 ∈ R with |x| < |x0| < R. Moreover, the definition of R implies that the series
diverges for every x ∈ R with |x| > R. If R = ∞, then the series converges for all
x ∈ R.

Finally, let 0 ≤ ρ < R and suppose |x| ≤ ρ. Choose σ > 0 such that ρ < σ < R.
Then

∑
|anσn| converges, so |anσn| ≤M , and therefore

|anxn| = |anσn|
∣∣∣x
σ

∣∣∣n ≤ |anσn|
∣∣∣ ρ
σ

∣∣∣n ≤Mrn,

where r = ρ/σ < 1. Since
∑
Mrn < ∞, the M -test (Theorem 5.22) implies that

the series converges uniformly on |x| ≤ ρ, and then it follows from Theorem 5.16
that the sum is continuous on |x| ≤ ρ. Since this holds for every 0 ≤ ρ < R, the
sum is continuous in |x| < R. �

The following definition therefore makes sense for every power series.

Definition 6.3. If the power series

∞∑
n=0

an(x− c)n

converges for |x − c| < R and diverges for |x − c| > R, then 0 ≤ R ≤ ∞ is called
the radius of convergence of the power series.

Theorem 6.2 does not say what happens at the endpoints x = c ± R, and in
general the power series may converge or diverge there. We refer to the set of all
points where the power series converges as its interval of convergence, which is one
of

(c−R, c+R), (c−R, c+R], [c−R, c+R), [c−R, c+R].

We will not discuss any general theorems about the convergence of power series at
the endpoints (e.g. the Abel theorem).

Theorem 6.2 does not give an explicit expression for the radius of convergence
of a power series in terms of its coefficients. The ratio test gives a simple, but useful,
way to compute the radius of convergence, although it doesn’t apply to every power
series.

Theorem 6.4. Suppose that an ̸= 0 for all sufficiently large n and the limit

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists or diverges to infinity. Then the power series

∞∑
n=0

an(x− c)n

has radius of convergence R.
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Proof. Let

r = lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣ = |x− c| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
By the ratio test, the power series converges if 0 ≤ r < 1, or |x − c| < R, and
diverges if 1 < r ≤ ∞, or |x− c| > R, which proves the result. �

The root test gives an expression for the radius of convergence of a general
power series.

Theorem 6.5 (Hadamard). The radius of convergence R of the power series
∞∑

n=0

an(x− c)n

is given by

R =
1

lim supn→∞ |an|1/n

where R = 0 if the lim sup diverges to ∞, and R = ∞ if the lim sup is 0.

Proof. Let

r = lim sup
n→∞

|an(x− c)n|1/n = |x− c| lim sup
n→∞

|an|1/n .

By the root test, the series converges if 0 ≤ r < 1, or |x − c| < R, and diverges if
1 < r ≤ ∞, or |x− c| > R, which proves the result. �

This theorem provides an alternate proof of Theorem 6.2 from the root test; in
fact, our proof of Theorem 6.2 is more-or-less a proof of the root test.

6.3. Examples of power series

We consider a number of examples of power series and their radii of convergence.

Example 6.6. The geometric series
∞∑

n=0

xn = 1 + x+ x2 + . . .

has radius of convergence

R = lim
n→∞

1

1
= 1.

so it converges for |x| < 1, to 1/(1 − x), and diverges for |x| > 1. At x = 1, the
series becomes

1 + 1 + 1 + 1 + . . .

and at x = −1 it becomes

1− 1 + 1− 1 + 1− . . . ,

so the series diverges at both endpoints x = ±1. Thus, the interval of convergence
of the power series is (−1, 1). The series converges uniformly on [−ρ, ρ] for every
0 ≤ ρ < 1 but does not converge uniformly on (−1, 1) (see Example 5.20. Note
that although the function 1/(1− x) is well-defined for all x ̸= 1, the power series
only converges to it when |x| < 1.
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Example 6.7. The series
∞∑

n=1

1

n
xn = x+

1

2
x2 +

1

3
x3 +

1

4
x4 + . . .

has radius of convergence

R = lim
n→∞

1/n

1/(n+ 1)
= lim

n→∞

(
1 +

1

n

)
= 1.

At x = 1, the series becomes the harmonic series
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . . ,

which diverges, and at x = −1 it is minus the alternating harmonic series
∞∑

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− . . . ,

which converges, but not absolutely. Thus the interval of convergence of the power
series is [−1, 1). The series converges uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1 but
does not converge uniformly on (−1, 1).

Example 6.8. The power series
∞∑

n=0

1

n!
xn = 1 + x+

1

2!
x+

1

3!
x3 + . . .

has radius of convergence

R = lim
n→∞

1/n!

1/(n+ 1)!
= lim

n→∞

(n+ 1)!

n!
= lim

n→∞
(n+ 1) = ∞,

so it converges for all x ∈ R. Its sum provides a definition of the exponential
function exp : R → R. (See Section 6.5.)

Example 6.9. The power series
∞∑

n=0

(−1)n

(2n)!
x2n = 1− 1

2!
x2 +

1

4!
x4 + . . .

has radius of convergence R = ∞, and it converges for all x ∈ R. Its sum provides
a definition of the cosine function cos : R → R.

Example 6.10. The series∑
n=0∞

(−1)n

(2n+ 1)!
x2n+1 = x− 1

3!
x3 +

1

5!
x5 + . . .

has radius of convergence R = ∞, and it converges for all x ∈ R. Its sum provides
a definition of the sine function sin : R → R.

Example 6.11. The power series
∞∑

n=0

(n!)xn = 1 + x+ (2!)x+ (3!)x3 + (4!)x4 + . . .
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Figure 1. Graph of the lacunary power series y =
∑∞

n=0(−1)nx2n on [0, 1).
It appears relatively well-behaved; however, the small oscillations visible near
x = 1 are not a numerical artifact.

has radius of convergence

R = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0,

so it converges only for x = 0. If x ̸= 0, its terms grow larger once n > 1/|x| and
|(n!)xn| → ∞ as n→ ∞.

Example 6.12. The series

∞∑
n=1

(−1)n+1

n
(x− 1)n = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . .

has radius of convergence

R = lim
n→∞

∣∣∣∣ (−1)n+1/n

(−1)n+2/(n+ 1)

∣∣∣∣ = lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1/n
= 1,

so it converges if |x− 1| < 1 and diverges if |x− 1| > 1. At the endpoint x = 2, the
power series becomes the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . . ,

which converges. At the endpoint x = 0, the power series becomes the harmonic
series

1 +
1

2
+

1

3
+

1

4
+ . . . ,

which diverges. Thus, the interval of convergence is (0, 2].



6.4. Differentiation of power series 79

Example 6.13. The power series
∞∑

n=0

(−1)nx2
n

= x− x2 + x4 − x8 + x16 − x32 + . . .

with

an =

{
1 if n = 2k,

0 if n ̸= 2k,

has radius of convergence R = 1. To prove this, note that the series converges for
|x| < 1 by comparison with the convergent geometric series

∑
|x|n, since

|anxn| =

{
|x|n if n = 2k,

0 ≤ |x|n if n ̸= 2k.

If |x| > 1, the terms do not approach 0 as n→ ∞, so the series diverges. Alterna-
tively, we have

|an|1/n =

{
1 if n = 2k,

0 if n ̸= 2k,

so

lim sup
n→∞

|an|1/n = 1

and the root test (Theorem 6.5) gives R = 1. The series does not converge at either
endpoint x = ±1, so its interval of convergence is (−1, 1).

There are successively longer gaps (or “lacuna”) between the powers with non-
zero coefficients. Such series are called lacunary power series, and they have many
interesting properties. For example, although the series does not converge at x = 1,
one can ask if

lim
x→1−

[ ∞∑
n=0

(−1)nx2
n

]
exists. In a plot of this sum on [0, 1), shown in Figure 1, the function appears
relatively well-behaved near x = 1. However, Hardy (1907) proved that the function
has infinitely many, very small oscillations as x → 1−, as illustrated in Figure 2,
and the limit does not exist. Subsequent results by Hardy and Littlewood (1926)
showed, under suitable assumptions on the growth of the “gaps” between non-zero
coefficients, that if the limit of a lacunary power series as x → 1− exists, then the
series must converge at x = 1. Since the lacunary power series considered here does
not converge at 1, its limit as x→ 1− cannot exist

6.4. Differentiation of power series

We saw in Section 5.4.3 that, in general, one cannot differentiate a uniformly con-
vergent sequence or series. We can, however, differentiate power series, and they
behaves as nicely as one can imagine in this respect. The sum of a power series

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . .

is infinitely differentiable inside its interval of convergence, and its derivative

f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + . . .



80 6. Power Series

0.9 0.92 0.94 0.96 0.98 1
0.46

0.47

0.48

0.49

0.5

0.51

0.52

x

y

0.99 0.992 0.994 0.996 0.998 1
0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

0.51

x

y

Figure 2. Details of the lacunary power series
∑∞

n=0(−1)nx2n near x = 1,

showing its oscillatory behavior and the nonexistence of a limit as x → 1−.

is given by term-by-term differentiation. To prove this, we first show that the
term-by-term derivative of a power series has the same radius of convergence as the
original power series. The idea is that the geometrical decay of the terms of the
power series inside its radius of convergence dominates the algebraic growth of the
factor n.

Theorem 6.14. Suppose that the power series
∞∑

n=0

an(x− c)n

has radius of convergence R. Then the power series
∞∑

n=1

nan(x− c)n−1

also has radius of convergence R.

Proof. Assume without loss of generality that c = 0, and suppose |x| < R. Choose
ρ such that |x| < ρ < R, and let

r =
|x|
ρ
, 0 < r < 1.

To estimate the terms in the differentiated power series by the terms in the original
series, we rewrite their absolute values as follows:∣∣nanxn−1

∣∣ = n

ρ

(
|x|
ρ

)n−1

|anρn| =
nrn−1

ρ
|anρn|.

The ratio test shows that the series
∑
nrn−1 converges, since

lim
n→∞

[
(n+ 1)rn

nrn−1

]
= lim

n→∞

[(
1 +

1

n

)
r

]
= r < 1,

so the sequence (nrn−1) is bounded, by M say. It follows that∣∣nanxn−1
∣∣ ≤ M

ρ
|anρn| for all n ∈ N.
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The series
∑

|anρn| converges, since ρ < R, so the comparison test implies that∑
nanx

n−1 converges absolutely.

Conversely, suppose |x| > R. Then
∑

|anxn| diverges (since
∑
anx

n diverges)
and ∣∣nanxn−1

∣∣ ≥ 1

|x|
|anxn|

for n ≥ 1, so the comparison test implies that
∑
nanx

n−1 diverges. Thus the series
have the same radius of convergence. �

Theorem 6.15. Suppose that the power series

f(x) =

∞∑
n=0

an(x− c)n for |x− c| < R

has radius of convergence R > 0 and sum f . Then f is differentiable in |x− c| < R
and

f ′(x) =
∞∑

n=1

nan(x− c)n−1 for |x− c| < R.

Proof. The term-by-term differentiated power series converges in |x − c| < R by
Theorem 6.14. We denote its sum by

g(x) =
∞∑

n=1

nan(x− c)n−1.

Let 0 < ρ < R. Then, by Theorem 6.2, the power series for f and g both converge
uniformly in |x− c| < ρ. Applying Theorem 5.18 to their partial sums, we conclude
that f is differentiable in |x − c| < ρ and f ′ = g. Since this holds for every
0 ≤ ρ < R, it follows that f is differentiable in |x−c| < R and f ′ = g, which proves
the result. �

Repeated application Theorem 6.15 implies that the sum of a power series is
infinitely differentiable inside its interval of convergence and its derivatives are given
by term-by-term differentiation of the power series. Furthermore, we can get an
expression for the coefficients an in terms of the function f ; they are simply the
Taylor coefficients of f at c.

Theorem 6.16. If the power series

f(x) =
∞∑

n=0

an(x− c)n

has radius of convergence R > 0, then f is infinitely differentiable in |x − c| < R
and

an =
f (n)(c)

n!
.

Proof. We assume c = 0 without loss of generality. Applying Theorem 6.16 to the
power series

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + . . .
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k times, we find that f has derivatives of every order in |x| < R, and

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + . . . ,

f ′′(x) = 2a2 + (3 · 2)a3x+ · · ·+ n(n− 1)anx
n−2 + . . . ,

f ′′′(x) = (3 · 2 · 1)a3 + · · ·+ n(n− 1)(n− 2)anx
n−3 + . . . ,

...

f (k)(x) = (k!)ak + · · ·+ n!

(n− k)!
xn−k + . . . ,

where all of these power series have radius of convergence R. Setting x = 0 in these
series, we get

a0 = f(0), a1 = f ′(0), . . . ak =
f (k)(0)

k!
,

which proves the result (after replacing 0 by c). �

One consequence of this result is that convergent power series with different
coefficients cannot converge to the same sum.

Corollary 6.17. If two power series
∞∑

n=0

an(x− c)n,

∞∑
n=0

bn(x− c)n

have nonzero-radius of convergence and are equal on some neighborhood of 0, then
an = bn for every n = 0, 1, 2, . . . .

Proof. If the common sum in |x− c| < δ is f(x), we have

an =
f (n)(c)

n!
, bn =

f (n)(c)

n!
,

since the derivatives of f at c are determined by the values of f in an arbitrarily
small open interval about c, so the coefficients are equal �

6.5. The exponential function

We showed in Example 6.8 that the power series

E(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn + . . . .

has radius of convergence∞. It therefore defines an infinitely differentiable function
E : R → R.

Term-by-term differentiation of the power series, which is justified by Theo-
rem 6.15, implies that

E′(x) = 1 + x+
1

2!
x2 + · · ·+ 1

(n− 1)!
x(n−1) + . . . ,

so E′ = E. Moreover E(0) = 1. As we show below, there is a unique function
with these properties, and they are shared by the exponential function ex. Thus,
this power series provides an analytical definition of ex = E(x). All of the other



6.5. The exponential function 83

familiar properties of the exponential follow from its power-series definition, and
we will prove a few of them.

First, we show that exey = ex+y. We continue to write the function as E(x) to
emphasise that we use nothing beyond its power series definition.

Proposition 6.18. For every x, y ∈ R,

E(x)E(y) = E(x+ y).

Proof. We have

E(x) =
∞∑
j=0

xj

j!
, E(y) =

∞∑
k=0

yk

k!
.

Multiplying these series term-by-term and rearranging the sum, which is justified
by the absolute converge of the power series, we get

E(x)E(y) =
∞∑
j=0

∞∑
k=0

xjyk

j! k!

=

∞∑
n=0

n∑
k=0

xn−kyk

(n− k)! k!
.

From the binomial theorem,

n∑
k=0

xn−kyk

(n− k)! k!
=

1

n!

n∑
k=0

n!

(n− k)! k!
xn−kyk =

1

n!
(x+ y)

n
.

Hence,

E(x)E(y) =
∞∑

n=0

(x+ y)n

n!
= E(x+ y),

which proves the result. �

In particular, it follows that

E(−x) = 1

E(x)
.

Note that E(x) > 0 for all x > 0 since all the terms in its power series are positive,
so E(x) > 0 for every x ∈ R.

The following proposition, which we use below in Section 6.6.2, states that ex

grows faster than any power of x as x→ ∞.

Proposition 6.19. Suppose that n is a non-negative integer. Then

lim
x→∞

xn

E(x)
= 0.

Proof. The terms in the power series of E(x) are positive for x > 0, so for every
k ∈ N

E(x) =

∞∑
n=0

xn

n!
>
xk

k!
for all x > 0.



84 6. Power Series

Taking k = n+ 1, we get for x > 0 that

0 <
xn

E(x)
<

xn

x(n+1)/(n+ 1)!
=

(n+ 1)!

x
.

Since 1/x→ 0 as x→ ∞, the result follows. �

Finally, we prove that the exponential is characterized by the properties E′ = E
and E(0) = 1. This is a uniqueness result for an initial value problem for a simple
linear ordinary differential equation.

Proposition 6.20. Suppose f : R → R is a differentiable function such that

f ′ = f, f(0) = 1.

Then f = E.

Proof. Suppose that f ′ = f . Then using the equation E′ = E, the fact that E is
nonzero on R, and the quotient rule, we get(

f

E

)′

=
fE′ − Ef ′

E2
=
fE − Ef

E2
= 0.

It follows from Theorem 4.29 that f/E is constant on R. Since f(0) = E(0) = 1,
we have f/E = 1, which implies that f = E. �

The logarithm can be defined as the inverse of the exponential. Other tran-
scendental functions, such as the trigonometric functions, can be defined in terms
of their power series, and these can be used to prove their usual properties. We
will not do this in detail; we just want to emphasize that, once we have developed
the theory of power series, we can define all of the functions arising in elementary
calculus from the first principles of analysis.

6.6. Taylor’s theorem and power series

Theorem 6.16 looks similar to Taylor’s theorem, Theorem 4.41. There is, however, a
fundamental difference. Taylor’s theorem gives an expression for the error between
a function and its Taylor polynomial of degree n. No questions of convergence are
involved here. On the other hand, Theorem 6.16 asserts the convergence of an
infinite power series to a function f , and gives an expression for the coefficients of
the power series in terms of f . The coefficients of the Taylor polynomials and the
power series are the same in both cases, but the Theorems are different.

Roughly speaking, Taylor’s theorem describes the behavior of the Taylor poly-
nomials Pn(x) of f as x→ c with n fixed, while the power series theorem describes
the behavior of Pn(x) as n→ ∞ with x fixed.

6.6.1. Smooth functions and analytic functions. To explain the difference
between Taylor’s theorem and power series in more detail, we introduce an im-
portant distinction between smooth and analytic functions: smooth functions have
continuous derivatives of all orders, while analytic functions are sums of power
series.
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Definition 6.21. Let k ∈ N. A function f : (a, b) → R is Ck on (a, b), written
f ∈ Ck(a, b), if it has continuous derivatives f (j) : (a, b) → R of orders 1 ≤ j ≤ k.
A function f is smooth (or C∞, or infinitely differentiable) on (a, b), written f ∈
C∞(a, b), if it has continuous derivatives of all orders on (a, b).

In fact, if f has derivatives of all orders, then they are automatically continuous,
since the differentiability of f (k) implies its continuity; on the other hand, the
existence of k derivatives of f does not imply the continuity of f (k). The statement
“f is smooth” is sometimes used rather loosely to mean “f has as many continuous
derivatives as we want,” but we will use it to mean that f is C∞.

Definition 6.22. A function f : (a, b) → R is analytic on (a, b) if for every c ∈ (a, b)
f is the sum in a neighborhood of c of a power series centered at c with nonzero
radius of convergence.

Strictly speaking, this is the definition of a real analytic function, and analytic
functions are complex functions that are sums of power series. Since we consider
only real functions, we abbreviate “real analytic” to “analytic.”

Theorem 6.16 implies that an analytic function is smooth: If f is analytic on
(a, b) and c ∈ (a, b), then there is an R > 0 and coefficients (an) such that

f(x) =
∞∑

n=0

an(x− c)n for |x− c| < R.

Then Theorem 6.16 implies that f has derivatives of all orders in |x− c| < R, and
since c ∈ (a, b) is arbitrary, f has derivatives of all orders in (a, b). Moreover, it
follows that the coefficients an in the power series expansion of f at c are given by
Taylor’s formula.

What is less obvious is that a smooth function need not be analytic. If f is
smooth, then we can define its Taylor coefficients an = f (n)(c)/n! at c for every
n ≥ 0, and write down the corresponding Taylor series

∑
an(x− c)n. The problem

is that the Taylor series may have zero radius of convergence, in which case it
diverges for every x ̸= c, or the power series may converge, but not to f .

6.6.2. A smooth, non-analytic function. In this section, we give an example
of a smooth function that is not the sum of its Taylor series.

It follows from Proposition 6.19 that if

p(x) =
n∑

k=0

akx
k

is any polynomial function, then

lim
x→∞

p(x)

ex
=

n∑
k=0

ak lim
x→∞

xk

ex
= 0.

We will use this limit to exhibit a non-zero function that approaches zero faster
than every power of x as x→ 0. As a result, all of its derivatives at 0 vanish, even
though the function itself does not vanish in any neighborhood of 0. (See Figure 3.)
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Figure 3. Left: Plot y = ϕ(x) of the smooth, non-analytic function defined

in Proposition 6.23. Right: A detail of the function near x = 0. The dotted
line is the power-function y = x6/50. The graph of ϕ near 0 is “flatter’ than
the graph of the power-function, illustrating that ϕ(x) goes to zero faster than
any power of x as x → 0.

Proposition 6.23. Define ϕ : R → R by

ϕ(x) =

{
exp(−1/x) if x > 0,

0 if x ≤ 0.

Then ϕ has derivatives of all orders on R and

ϕ(n)(0) = 0 for all n ≥ 0.

Proof. The infinite differentiability of ϕ(x) at x ̸= 0 follows from the chain rule.
Moreover, its nth derivative has the form

ϕ(n)(x) =

{
pn(1/x) exp(−1/x) if x > 0,

0 if x < 0,

where pn(1/x) is a polynomial in 1/x. (This follows, for example, by induction.)
Thus, we just have to show that ϕ has derivatives of all orders at 0, and that these
derivatives are equal to zero.

First, consider ϕ′(0). The left derivative ϕ′(0−) of ϕ at 0 is clearly 0 since
ϕ(0) = 0 and ϕ(h) = 0 for all h < 0. For the right derivative, writing 1/h = x and
using Proposition 6.19, we get

ϕ′(0+) = lim
h→0+

[
ϕ(h)− ϕ(0)

h

]
= lim

h→0+

exp(−1/h)

h

= lim
x→∞

x

ex

= 0.

Since both the left and right derivatives equal zero, we have ϕ′(0) = 0.

To show that all the derivatives of ϕ at 0 exist and are zero, we use a proof
by induction. Suppose that ϕ(n)(0) = 0, which we have verified for n = 1. The
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left derivative ϕ(n+1)(0−) is clearly zero, so we just need to prove that the right
derivative is zero. Using the form of ϕ(n)(h) for h > 0 and Proposition 6.19, we get
that

ϕ(n+1)(0+) = lim
h→0+

[
ϕ(n)(h)− ϕ(n)(0)

h

]
= lim

h→0+

pn(1/h) exp(−1/h)

h

= lim
x→∞

xpn(x)

ex

= 0,

which proves the result. �

Corollary 6.24. The function ϕ : R → R defined by

ϕ(x) =

{
exp(−1/x) if x > 0,

0 if x ≤ 0,

is smooth but not analytic on R.

Proof. From Proposition 6.23, the function ϕ is smooth, and the nth Taylor coef-
ficient of ϕ at 0 is an = 0. The Taylor series of ϕ at 0 therefore converges to 0, so
its sum is not equal to ϕ in any neighborhood of 0, meaning that ϕ is not analytic
at 0. �

The fact that the Taylor polynomial of ϕ at 0 is zero for every degree n ∈ N does
not contradict Taylor’s theorem, which states that for x > 0 there exists 0 < ξ < x
such that

ϕ(x) =
pn+1(1/ξ)

(n+ 1)!
e−1/ξxn+1.

Since the derivatives of ϕ are bounded, this shows that for every n ∈ N there exists
a constant Cn+1 such that

0 ≤ ϕ(x) ≤ Cn+1x
n+1 for all 0 ≤ x <∞,

but this does not imply that ϕ(x) = 0.

We can construct other smooth, non-analytic functions from ϕ.

Example 6.25. The function

ψ(x) =

{
exp(−1/x2) if x ̸= 0,

0 if x = 0,

is infinitely differentiable on R, since ψ(x) = ϕ(x2) is a composition of smooth
functions.

The following example is useful in many parts of analysis.

Definition 6.26. A function f : R → R has compact support if there exists R ≥ 0
such that f(x) = 0 for all x ∈ R with |x| ≥ R.
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Figure 4. Plot of the smooth, compactly supported “bump” function defined
in Example 6.27.

It isn’t hard to construct continuous functions with compact support; one ex-
ample that vanishes for |x| ≥ 1 is

f(x) =

{
1− |x| if |x| < 1,

0 if |x| ≥ 1.

By matching left and right derivatives of a piecewise-polynomial function, we can
similarly construct C1 or Ck functions with compact support. Using ϕ, however,
we can construct a smooth (C∞) function with compact support, which might seem
unexpected at first sight.

Example 6.27. The function

η(x) =

{
exp[−1/(1− x2)] if |x| < 1,

0 if |x| ≥ 1,

is infinitely differentiable on R, since η(x) = ϕ(1− x2) is a composition of smooth
functions. Moreover, it vanishes for |x| ≥ 1, so it is a smooth function with compact
support. Figure 4 shows its graph.

The function ϕ defined in Proposition 6.23 illustrates that knowing the values
of a smooth function and all of its derivatives at one point does not tell us anything
about the values of the function at other points. By contrast, an analytic function
on an interval has the remarkable property that the value of the function and all of
its derivatives at one point of the interval determine its values at all other points
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of the interval, since we can extend the function from point to point by summing
its power series. (This claim requires a proof, which we omit.)

For example, it is impossible to construct an analytic function with compact
support, since if an analytic function on R vanishes in any interval (a, b) ⊂ R, then
it must be identically zero on R. Thus, the non-analyticity of the “bump”-function
η in Example 6.27 is essential.

6.7. Appendix: Review of series

We summarize the results and convergence tests that we use to study power series.
Power series are closely related to geometric series, so most of the tests involve
comparisons with a geometric series.

Definition 6.28. Let (an) be a sequence of real numbers. The series

∞∑
n=1

an

converges to a sum S ∈ R if the sequence (Sn) of partial sums

Sn =
n∑

k=1

ak

converges to S. The series converges absolutely if

∞∑
n=1

|an|

converges.

The following Cauchy condition for series is an immediate consequence of the
Cauchy condition for the sequence of partial sums.

Theorem 6.29 (Cauchy condition). The series

∞∑
n=1

an

converges if and only for every ϵ > 0 there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ = |am+1 + am+2 + · · ·+ an| < ϵ for all n > m > N.

Proof. The series converges if and only if the sequence (Sn) of partial sums is
Cauchy, meaning that for every ϵ > 0 there exists N such that

|Sn − Sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ϵ for all n > m > N,

which proves the result. �
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Since ∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak|

the series
∑
an is Cauchy if

∑
|an| is Cauchy, so an absolutely convergent series

converges. We have the following necessary, but not sufficient, condition for con-
vergence of a series.

Theorem 6.30. If the series
∞∑

n=1

an

converges, then
lim

n→∞
an = 0.

Proof. If the series converges, then it is Cauchy. Taking m = n− 1 in the Cauchy
condition in Theorem 6.29, we find that for every ϵ > 0 there exists N ∈ N such
that |an| < ϵ for all n > N , which proves that an → 0 as n→ ∞. �

Next, we derive the comparison, ratio, and root tests, which provide explicit
sufficient conditions for the convergence of a series.

Theorem 6.31 (Comparison test). Suppose that |bn| ≤ an and
∑
an converges.

Then
∑
bn converges absolutely.

Proof. Since
∑
an converges it satisfies the Cauchy condition, and since

n∑
k=m+1

|bk| ≤
n∑

k=m+1

ak

the series
∑

|bn| also satisfies the Cauchy condition. Therefore
∑
bn converges

absolutely. �
Theorem 6.32 (Ratio test). Suppose that (an) is a sequence of real numbers such
that an is nonzero for all sufficiently large n ∈ N and the limit

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists or diverges to infinity. Then the series

∞∑
n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. If r < 1, choose s such that r < s < 1. Then there exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < s for all n > N.

It follows that
|an| ≤Msn for all n > N

whereM is a suitable constant. Therefore
∑
an converges absolutely by comparison

with the convergent geometric series
∑
Msn.
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If r > 1, choose s such that r > s > 1. There exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ > s for all n > N,

so that |an| ≥ Msn for all n > N and some M > 0. It follows that (an) does not
approach 0 as n→ ∞, so the series diverges. �

Before stating the root test, we define the lim sup.

Definition 6.33. If (an) is a sequence of real numbers, then

lim sup
n→∞

an = lim
n→∞

bn, bn = sup
k≥n

ak.

If (an) is a bounded sequence, then lim sup an ∈ R always exists since (bn)
is a monotone decreasing sequence of real numbers that is bounded from below.
If (an) isn’t bounded from above, then bn = ∞ for every n ∈ N (meaning that
{ak : k ≥ n} isn’t bounded from above) and we write lim sup an = ∞. If (an) is
bounded from above but (bn) diverges to −∞, then (an) diverges to −∞ and we
write lim sup an = −∞. With these conventions, every sequence of real numbers
has a lim sup, even if it doesn’t have a limit or diverge to ±∞.

We have the following equivalent characterization of the lim sup, which is what
we often use in practice. If the lim sup is finite, it states that every number bigger
than the lim sup eventually bounds all the terms in a tail of the sequence from
above, while infinitely many terms in the sequence are greater than every number
less than the lim sup.

Proposition 6.34. Let (an) be a real sequence with

L = lim sup
n→∞

an.

(1) If L ∈ R is finite, then for every M > L there exists N ∈ N such that an < M
for all n > N , and for every m < L there exist infinitely many n ∈ N such
that an > m.

(2) If L = −∞, then for every M ∈ R there exists N ∈ N such that an < M for
all n > N .

(3) If L = ∞, then for every m ∈ R, there exist infinitely many n ∈ N such that
an > m.

Theorem 6.35 (Root test). Suppose that (an) is a sequence of real numbers and
let

r = lim sup
n→∞

|an|1/n .

Then the series
∞∑

n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. First suppose 0 ≤ r < 1. If 0 < r < 1, choose s such that r < s < 1, and
let

t =
r

s
, r < t < 1.



92 6. Power Series

If r = 0, choose any 0 < t < 1. Since t > lim sup |an|1/n, Proposition 6.34 implies
that there exists N ∈ N such that

|an|1/n < t for all n > N.

Therefore |an| < tn for all n > N , where t < 1, so it follows that the series converges
by comparison with the convergent geometric series

∑
tn.

Next suppose 1 < r ≤ ∞. If 1 < r <∞, choose s such that 1 < s < r, and let

t =
r

s
, 1 < t < r.

If r = ∞, choose any 1 < t <∞. Since t < lim sup |an|1/n, Proposition 6.34 implies
that

|an|1/n > t for infinitely many n ∈ N.
Therefore |an| > tn for infinitely many n ∈ N, where t > 1, so (an) does not
approach zero as n→ ∞, and the series diverges. �


