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1 Proper Integrals Depending on a Parameter

1.1 The Concept of an Integral Depending on a Parameter

An integral depending on a parameter is a function of the form

F (t) =

∫
Et

f(x, t) dt, (1)

where t plays the role of a parameter ranging over a set T , and to each value t ∈ T
there corresponding a set Et and a function ϕt(x) = f(x, t) that is integrable over

Et in the proper or improper sense. The nature of the set T may be quite varied,

but of course the most important cases occurs when T is a subset of R,C,Rn,Cn.

If the integral (Eq. 1) is a proper integral for each value of the parameter

t ∈ T , we say that the function in Eq. 1 is a proper integral depending on a

parameter.

But if the integral in Eq. 1 exists only as an improper integral for some or

all of the value of t ∈ T , we usually call F an improper integral depending on a

parameter.
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1.2 Continuity of an Integral Depending on a Parameter

Proposition 1. Let P = {(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d} be a rectangle on the

plane R2. If the function f : P → R is continuous, that is, if f ∈ C(P,R), then

the function

F (y) =

∫ b

a

f(x, y) dx (2)

is continuous at every point y ∈ [c, d].

Example 1. Find the limit

lim
a→0

∫ 1

0

dx

1 + x2 cos ax

Proposition 2. Suppose f(x, y) ∈ C ([a, b]× [c, d]), then

∫ d

c

dy

∫ b

a

f(x, y) dx =

∫ b

a

dx

∫ d

c

f(x, y) dy.

Example 2. Find the value

I =

∫ 1

0

xb − xa

lnx
dx, for b > a > 0

1.3 Differentiation of an Integral Depending on a Param-

eter

Proposition 3. If the function f : P → R is continuous and has a continuous par-

tial derivative with respect to y on the rectangle P = {(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d},
then the integral of Eq. 2 belongs to C(1) ([c, d],R), and

F ′(y) =

∫ b

a

∂f

∂y
(x, y) dx.

Example 3. The complete elliptic integrals

E(k) =

∫ π
2

0

√
1− k2 sin2 ϕ dϕ,K(k) =

∫ π
2

0

dϕ√
1− k2 sin2 ϕ

as functions of the parameter k, 0 < k < 1, called the modulus of the corresponding
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elliptic integral, are connected by the relations

dE

dk
=
E −K
k

,
dK

dk
=

E

k(1− k2)
− K

k
.

Proposition 4. Suppose the function f : P → R is continuous and has a continu-

ous partial derivative ∂f
∂y

on the rectangle P = {(x, y) ∈ R2|a ≤ x ≤ b, c ≤ y ≤ d},
further suppose α(y), β(y) are continuously differentiable functions on [c, d] whose

values lie in [a, b] for every y ∈ [c, d]. Then the integral

F (y) =

∫ β(y)

α(y)

f(x, y) dx

is defined for every y ∈ [c, d] and belongs to C(1) ([c, d]) , and the following formula

holds;

F ′(y) = f(β(y), y) · β′(y)− f(α(y), y) · α′(y) +

∫ β(y)

α(y)

∂f

∂y
(x, y) dx.

Example 4. Let

Fn(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1f(t) dt,

where n ∈ N and f is a function that is continuous on the interval of integration.

Let us verify that F n
n (x) = f(x).

1.4 Integration of an Integral Depending on a Parameter

Proposition 5. If the function f : P → R is continuous in the rectangle P =

{(x, y) ∈ R2|a ≤ x ≤ bandc ≤ y ≤ d} , then the integral Eq. 2 is integrable over

the closed interval [c, d] and the following equality holds:

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx (3)
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2 Improper Integrals Depending on a Parameter

2.1 Uniform Convergence of an Improper Integral With

Respect to a Parameter

a. Basic Definition and Examples Suppose that the improper integral

F (y) =

∫ ω

a

f(x, y) dx (4)

over the interval [a, ω] converges for each value y ∈ Y . For definiteness we shall

assume that the integral Eq. 4 has only one singularity and that it involves the up-

per limit of the integration (that is, either ω = +∞ or the function f is unbounded

as a function of x in a neighbourhood of ω.)

Definition 1. We say that the improper integral Eq. 4 depending on the parameter

y ∈ Y converges uniformly on the set E ⊂ Y if for every ε > 0 there exists a

neighborhood U[a,ω[(ω) of ω in the set [a, ω[ such that the estimate∣∣∣∣∫ ω

b

f(x, y) dx

∣∣∣∣ < ε (5)

for the remainder of the integral Eq.4 holds for every b ∈ U[a,ω[(ω) and every y ∈ E.

If we introduce the notation

Fb(y) =

∫ b

a

f(x, y) dx (6)

for a proper integral approximating the improper integral of Eq.4, the basic defini-

tion of this section can be restated as in a different form equivalent to the previous

one: uniform convergence of the integral of Eq. 4 on the set E ⊂ Y by definition

means that

Fb(y) ⇒ F (y) on E as b→ ω, b ∈ [a, ω[ (7)

Example 5. The integral ∫ +∞

1

dx

x2 + y2

converges uniformly on the entire set R of values of the parameter y ∈ R.
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Example 6. The integral ∫ +∞

0

e−xy dx

converges only when y > 0. Moreover it converges uniformly on every set {y ∈ R|y ≥ y0 ≥ 0} .

Example 7. Let us show that each of the integrals

Φ(x) =

∫ +∞

0

xαyα+β+1e−(1+x)y dy

F (y) =

∫ +∞

0

xαyα+β+1e−(1+x)y dx

in which α, β are fixed positive numbers, converges uniformly on the set of non-

negative values of the parameter.

b. The Cauchy Criterion for Uniform Convergence of an Integral

Proposition 6. Cauchy Criterion. A necessary and sufficient condition for

the improper integral of Eq. 4 depending on parameter y ∈ Y to converge uniformly

on a set E ⊂ Y is that for every ε > 0 there exist a neighborhood U[a,ω[ of the point

ω such that ∣∣∣∣∫ b2

b1

f(x, y)

∣∣∣∣ < ε

for every b1, b2 ∈ U[a,ω[ and every y ∈ E.

Corollary 1. If the function f in the integral of Eq. 4 is continuous on the set

[a, ω[×[c, d] and the integral of Eq. 4 converges for every y ∈]c, d[ but diverges for

y = c or y = d, then it converges non-uniformly on the interval ]c, d[ and also on

any set E ⊂]c, d[ whose closure contains the point of divergence.

Example 8. The integral ∫ +∞

0

e−tx
2

dx

converges for t > 0 and diverges at t = 0, hence it demonstrably converges non-

uniformly on every set of positive numbers having 0 as a limit point.

c. Sufficient Conditions for Uniform Convergence of an Improper Inte-

gral Depending on a Parameter
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Proposition 7. The Weierstrass test. Suppose the functions f(x, y) and g(x, y)

are integrable with respect to x on every closed interval [a, b] ⊂ [a, ω[ for each value

of y ∈ Y .

If the inequality |f(x, y)| ≤ g(x, y) holds for each value of y ∈ Y and every

x ∈ [a, ω[ and the integral ∫ ω

a

g(x, y) dx

converges uniformly on Y , then the integral∫ ω

0

f(x, y) dx

converges absolutely for each y ∈ Y and uniformly on Y .

The most frequently encountered case of Proposition 2 occurs when the func-

tion g is independent of the parameter y. It is this case in which Proposition 2 is

usually called the Weierstrass M-test for uniform convergence of an integral.

Example 9. The integral ∫ ∞
0

cosαx

1 + x2
dx

converges uniformly on the whole set R of the parameter α, since
∣∣ cosαx
1+x2

∣∣ ≤ 1
1+x2

,

and the integral
∫∞
0

dx
1+x2

converges.

Proposition 8. ( Abel-Dirichlet test.) Assume that the function f(x, y) and

g(x, y) are integrable with respect to x at each y ∈ Y on every closed interval

[a, b] ⊂ [a, ω[.

A sufficient condition for uniform convergence of the integral∫ ω

a

(f · g) dx

on the set Y is that one of the following two pairs of conditions holds:

1-1) either there exists a constant M ∈ R such that∣∣∣∣∫ b

a

f(x, y) dx

∣∣∣∣ < M

for any b ∈ [a, ω[ and any y ∈ Y and
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1-2) for each y ∈ Y the function g(x, y) is monotonic with respect to x on the

interval [a, ω[ and g(x, y) ⇒ 0 on Y as x→ ω, x ∈ [a, ω[, or

2-1) the integral ∫ ω

a

f(x, y) dx

converges uniformly on the set Y and

2-2) for each y ∈ Y the function g(x, y) is monotonic with respect to x on the

interval [a, ω[ and there exists a constant M ∈ R such that

|g(x, y)| < M

for every x ∈ [a, ω[ and every y ∈ Y .

Applying the second mean-value theorem for the integral, we have

∫ b2

b1

(f · g) (x, y) dx = g(b1, y)

∫ ξ

b1

f(x, y) dx+ g(b2, y)

∫ b2

ξ

f(x, y) dx

Example 10. The integral ∫ ∞
0

sinx

x
e−xy dx

converges uniformly on the set {y ∈ R|y ≥ 0}.

Example 11. The integral ∫ ∞
0

sinxy

x
dx

converges uniformly on the set {y ∈ R|y ≥ y0 > 0} and not uniformly convergence

on the set {y ∈ R|y > 0}

Example 12. The integrali

∫ +∞

0

cosx2

xp
dx converges uniformly on each p ∈

[α, β] ⊂ (−1, 1).
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3 Limiting Passage under the Sign of an Im-

proper Integral and Continuity of an Improper

Integral Depending on a Parameter

Proposition 9. Let f(x, y) be a family of functions depending on a parameter

y ∈ Y that are integrable, possibly in the improper sense, on the interval a ≤ x ≤
ω, and let BY be a base in Y .

If

a) for every b ∈ [a, ω[

f(x, y) ⇒ ϕ(x) on [a, b] over the base BY ,

b) the integral

∫ ω

a

f(x, y) dx converges uniformly on Y , then the limit function ϕis

improperly integrable on [a, ω[ and the following equality holds:

lim
BY

∫ ω

a

f(x, y) dx =

∫ ω

a

ϕ dx.

Proposition 10. If

a) the function f(x, y) is continuous on the set{
(x, y) ∈ R2|a ≤ x < ω, c ≤ y ≤ d

}
and

b) the integral F (y) =
∫ ω
a
f(x, y) dx converges uniformly on [c, d],

then the function F (y) is continuous on [c, d].

Proposition 11. Suppose f(x, y) is continuous on [a,+∞)×[c, d], and the integral∫∞
a
f(x, y) dx converges uniformly on [c, d], then we have

∫ d

c

dy

∫ +∞

a

f(x, y) dx =

∫ +∞

a

dx

∫ d

c

f(x, y) dy

Proposition 12. Suppose f(x, y), fy(x, y) are continuous on [a,+∞)× [c, d], for

each y ∈ [c, d] the integral
∫ +∞
a

f(x, y) dx converges. Furthermore the integral
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∫ +∞
a

fy(x, y) dx is uniformly converges. Then we have

d

dy

∫ +∞

a

f(x, y) dx =

∫ +∞

a

∂

∂y
f(x, y) dx

4 The Eulerian Integrals

In this section and the next we shall illustrate the application of the theory

developed above to some specific integrals of importance in analysis that depend

on a parameter.

Following Legendre, we define the Eulerian integrals of first and second kinds

respectively as the two special functions that follow:

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx (8)

Γ(α) =

∫ +∞

0

xα−1e−x dx. (9)

The first of these is called the beta function and the second the gamma

function.

4.1 The Beta Function

a. Domain of Definition A necessary and sufficient condition for the conver-

gence of the integral of the beta function at the lower limit is that α > 0. Similarly,

convergence at 1 occurs if and only if β > 0. Thus the beta function is defined

when both of the following conditions hold simultaneously:

α > 0 and β > 0

b. Symmetry We can verify that:

B(α, β) = B(β, α)
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c. The Reduction Formula If α > 1, the following equality holds:

B(α, β) =
α− 1

α + β − 1
B(α− 1, β)

We can now write the reduction form:

B(α, β) =
α− 1

α + β − 1
B(α, β − 1)

It can be seen immediately from the definition of the beta function that

B(α, 1) = 1
α

, and so for n ∈ N we obtain

B(α, n) =
n− 1

α + n− 1
· n− 2

α + n− 2
· · · n− (n− 1)

α + n− (n− 1)
B(α, 1)

=
(n− 1)!

α(α + 1) · · · (α + n− 1)
.

(10)

In particular, for m,n ∈ N

B(m,n) =
(m− 1)!(n− 1)!

(m+ n− 1)!
(11)

d. Other forms of Representation of the Beta Function (1) One form for

the beta function is

B(α, β) = 2

∫ π
2

0

cos2p−1 φ sin2q−1 φ dφ

B

(
1

2
,
1

2

)
= π

(2) The other form for the beta function is

B(α, β) =

∫ +∞

0

tβ−1

(1 + t)α+β
dt
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5 The Gamma Function

a. Domain of the Definition The Gamma Function is:

Γ(α) =

∫ +∞

0

xα−1e−x dx

It can be seen from the definition that the integral defining the gamma function

converges at zero only for α > 0, while it converges at infinity for all values of

α ∈ R, due to the presence of the rapidly decreasing factor e−x. Thus the gamma

function is defined for α > 0.

b. Smoothness and the Formula for the Derivatives The gamma function

is infinitely differentiable, and

Γ(n)(α) =

∫ +∞

0

xα−1 lnn xe−x dx (12)

c. The Reduction Formula The relation

Γ(α + 1) = αΓ(α)

holds. It is known as the reduction formula for the gamma function.

Since Γ(1) = 1, we conclude that for n ∈ N

Γ(n+ 1) = n!

Thus the gamma function turns out to be closely connected with the number-

theoretic function n!.

d. The Euler-Gauss Formula This is usually given to the following equality:

Γ(α) = lim
n→∞

nα
(n− 1)!

α(α + 1) · · · (α + n− 1)
(13)

e. The Complement Formula For 0 < α < 1 the values α and 1 − α of

the argument of the gamma function are mutually complementary, so that the
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equality

Γ(α)Γ(1− α) =
π

sin πα
(0 < α < 1) (14)

It follows in particular from EQ 14 that

Γ

(
1

2

)
=
√
π

We observe that

Γ

(
1

2

)
=

∫ +∞

0

x−
1
2 e−x dx = 2

∫ +∞

0

e−u
2

du =
√
π

f. Connection Between the Beta and Gamma Function The connection

between the beta and gamma function is

B (α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (15)

Example 13. Find the result of

I =

∫ π
2

0

sin6 x cos4 x dx

Example 14. Find the result of∫ 1

0

x8
√

1− x3 dx

Example 15. suppose α > −1, find the results of the following integrals

∫ π
2

0

sinα x dx =

∫ π
2

0

cosα x dx

Furthermore, find the volume of the n-dimensional sphere of the form

Bn =
{

(x1, x2, · · · , xn)|x21 + x22 + · · ·+ x2n ≤ R2
}
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