Integrals Depending on a Parameter

Guoning Wu*

China University of Petroleum-Beijing

2017.9

1 Proper Integrals Depending on a Parameter

1.1 The Concept of an Integral Depending on a Parameter

An integral depending on a parameter is a function of the form

$$
\begin{equation*}
F(t)=\int_{E_{t}} f(x, t) \mathrm{d} t, \tag{1}
\end{equation*}
$$

where t plays the role of a parameter ranging over a set T, and to each value $t \in T$ there corresponding a set E_{t} and a function $\varphi_{t}(x)=f(x, t)$ that is integrable over E_{t} in the proper or improper sense. The nature of the set T may be quite varied, but of course the most important cases occurs when T is a subset of $\mathbb{R}, \mathbb{C}, \mathbb{R}^{n}, \mathbb{C}^{n}$.

If the integral (Eq. 1) is a proper integral for each value of the parameter $t \in T$, we say that the function in Eq. 1 is a proper integral depending on a parameter.

But if the integral in Eq. 1 exists only as an improper integral for some or all of the value of $t \in T$, we usually call F an improper integral depending on a parameter.

[^0]
1.2 Continuity of an Integral Depending on a Parameter

Proposition 1. Let $P=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$ be a rectangle on the plane \mathbb{R}^{2}. If the function $f: P \rightarrow \mathbb{R}$ is continuous, that is, if $f \in C(P, \mathbb{R})$, then the function

$$
\begin{equation*}
F(y)=\int_{a}^{b} f(x, y) \mathrm{d} x \tag{2}
\end{equation*}
$$

is continuous at every point $y \in[c, d]$.
Example 1. Find the limit

$$
\lim _{a \rightarrow 0} \int_{0}^{1} \frac{d x}{1+x^{2} \cos a x}
$$

Proposition 2. Suppose $f(x, y) \in C([a, b] \times[c, d])$, then

$$
\int_{c}^{d} \mathrm{~d} y \int_{a}^{b} f(x, y) \mathrm{d} x=\int_{a}^{b} \mathrm{~d} x \int_{c}^{d} f(x, y) \mathrm{d} y
$$

Example 2. Find the value

$$
I=\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} \mathrm{~d} x, \text { for } \quad b>a>0
$$

1.3 Differentiation of an Integral Depending on a Parameter

Proposition 3. If the function $f: P \rightarrow \mathbb{R}$ is continuous and has a continuous partial derivative with respect to y on the rectangle $P=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$, then the integral of Eq. 2 belongs to $C^{(1)}([c, d], \mathbb{R})$, and

$$
F^{\prime}(y)=\int_{a}^{b} \frac{\partial f}{\partial y}(x, y) \mathrm{d} x
$$

Example 3. The complete elliptic integrals

$$
E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \varphi} \mathrm{~d} \varphi, K(k)=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \varphi}{\sqrt{1-k^{2} \sin ^{2} \varphi}}
$$

as functions of the parameter $k, 0<k<1$, called the modulus of the corresponding
elliptic integral, are connected by the relations

$$
\frac{\mathrm{d} E}{\mathrm{~d} k}=\frac{E-K}{k}, \frac{\mathrm{~d} K}{\mathrm{~d} k}=\frac{E}{k\left(1-k^{2}\right)}-\frac{K}{k} .
$$

Proposition 4. Suppose the function $f: P \rightarrow \mathbb{R}$ is continuous and has a continuous partial derivative $\frac{\partial f}{\partial y}$ on the rectangle $P=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$, further suppose $\alpha(y), \beta(y)$ are continuously differentiable functions on $[c, d]$ whose values lie in $[a, b]$ for every $y \in[c, d]$. Then the integral

$$
F(y)=\int_{\alpha(y)}^{\beta(y)} f(x, y) \mathrm{d} x
$$

is defined for every $y \in[c, d]$ and belongs to $C^{(1)}([c, d])$, and the following formula holds;

$$
F^{\prime}(y)=f(\beta(y), y) \cdot \beta^{\prime}(y)-f(\alpha(y), y) \cdot \alpha^{\prime}(y)+\int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x, y) \mathrm{d} x
$$

Example 4. Let

$$
F_{n}(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1} f(t) \mathrm{d} t
$$

where $n \in N$ and f is a function that is continuous on the interval of integration. Let us verify that $F_{n}^{n}(x)=f(x)$.

1.4 Integration of an Integral Depending on a Parameter

Proposition 5. If the function $f: P \rightarrow \mathbb{R}$ is continuous in the rectangle $P=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b a n d c \leq y \leq d\right\}$, then the integral Eq. 2 is integrable over the closed interval $[c, d]$ and the following equality holds:

$$
\begin{equation*}
\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x \tag{3}
\end{equation*}
$$

2 Improper Integrals Depending on a Parameter

2.1 Uniform Convergence of an Improper Integral With Respect to a Parameter

a. Basic Definition and Examples Suppose that the improper integral

$$
\begin{equation*}
F(y)=\int_{a}^{\omega} f(x, y) \mathrm{d} x \tag{4}
\end{equation*}
$$

over the interval $[a, \omega]$ converges for each value $y \in Y$. For definiteness we shall assume that the integral Eq. 4 has only one singularity and that it involves the upper limit of the integration (that is, either $\omega=+\infty$ or the function f is unbounded as a function of x in a neighbourhood of ω.)

Definition 1. We say that the improper integral Eq. 4 depending on the parameter $y \in Y$ converges uniformly on the set $E \subset Y$ if for every $\epsilon>0$ there exists a neighborhood $U_{[a, \omega[}(\omega)$ of ω in the set $[a, \omega[$ such that the estimate

$$
\begin{equation*}
\left|\int_{b}^{\omega} f(x, y) \mathrm{d} x\right|<\epsilon \tag{5}
\end{equation*}
$$

for the remainder of the integral Eq. 4 holds for every $b \in U_{[a, \omega[}(\omega)$ and every $y \in E$.

If we introduce the notation

$$
\begin{equation*}
F_{b}(y)=\int_{a}^{b} f(x, y) \mathrm{d} x \tag{6}
\end{equation*}
$$

for a proper integral approximating the improper integral of Eq.4, the basic definition of this section can be restated as in a different form equivalent to the previous one: uniform convergence of the integral of Eq. 4 on the set $E \subset Y$ by definition means that

$$
\begin{equation*}
F_{b}(y) \rightrightarrows F(y) \text { on } E \text { as } b \rightarrow \omega, b \in[a, \omega[\tag{7}
\end{equation*}
$$

Example 5. The integral

$$
\int_{1}^{+\infty} \frac{\mathrm{d} x}{x^{2}+y^{2}}
$$

converges uniformly on the entire set \mathbb{R} of values of the parameter $y \in \mathbb{R}$.

Example 6. The integral

$$
\int_{0}^{+\infty} e^{-x y} \mathrm{~d} x
$$

converges only when $y>0$. Moreover it converges uniformly on every set $\left\{y \in \mathbb{R} \mid y \geq y_{0} \geq 0\right\}$.
Example 7. Let us show that each of the integrals

$$
\begin{aligned}
& \Phi(x)=\int_{0}^{+\infty} x^{\alpha} y^{\alpha+\beta+1} e^{-(1+x) y} \mathrm{~d} y \\
& F(y)=\int_{0}^{+\infty} x^{\alpha} y^{\alpha+\beta+1} e^{-(1+x) y} \mathrm{~d} x
\end{aligned}
$$

in which α, β are fixed positive numbers, converges uniformly on the set of nonnegative values of the parameter.

b. The Cauchy Criterion for Uniform Convergence of an Integral

Proposition 6. Cauchy Criterion. A necessary and sufficient condition for the improper integral of Eq. 4 depending on parameter $y \in Y$ to converge uniformly on a set $E \subset Y$ is that for every $\epsilon>0$ there exist a neighborhood $U_{[a, \omega[}$ of the point ω such that

$$
\left|\int_{b_{1}}^{b_{2}} f(x, y)\right|<\epsilon
$$

for every $b_{1}, b_{2} \in U_{[a, \omega[}$ and every $y \in E$.
Corollary 1. If the function f in the integral of Eq. 4 is continuous on the set $[a, \omega[\times[c, d]$ and the integral of Eq. 4 converges for every $y \in] c, d[$ but diverges for $y=c$ or $y=d$, then it converges non-uniformly on the interval $] c, d[$ and also on any set $E \subset] c, d[$ whose closure contains the point of divergence.

Example 8. The integral

$$
\int_{0}^{+\infty} e^{-t x^{2}} \mathrm{~d} x
$$

converges for $t>0$ and diverges at $t=0$, hence it demonstrably converges nonuniformly on every set of positive numbers having 0 as a limit point.
c. Sufficient Conditions for Uniform Convergence of an Improper Integral Depending on a Parameter

Proposition 7. The Weierstrass test. Suppose the functions $f(x, y)$ and $g(x, y)$ are integrable with respect to x on every closed interval $[a, b] \subset[a, \omega[$ for each value of $y \in Y$.

If the inequality $|f(x, y)| \leq g(x, y)$ holds for each value of $y \in Y$ and every $x \in[a, \omega[$ and the integral

$$
\int_{a}^{\omega} g(x, y) \mathrm{d} x
$$

converges uniformly on Y, then the integral

$$
\int_{0}^{\omega} f(x, y) \mathrm{d} x
$$

converges absolutely for each $y \in Y$ and uniformly on Y.

The most frequently encountered case of Proposition 2 occurs when the function g is independent of the parameter y. It is this case in which Proposition 2 is usually called the Weierstrass M-test for uniform convergence of an integral.

Example 9. The integral

$$
\int_{0}^{\infty} \frac{\cos \alpha x}{1+x^{2}} \mathrm{~d} x
$$

converges uniformly on the whole set \mathbb{R} of the parameter α, since $\left|\frac{\cos \alpha x}{1+x^{2}}\right| \leq \frac{1}{1+x^{2}}$, and the integral $\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ converges.

Proposition 8. (Abel-Dirichlet test.) Assume that the function $f(x, y)$ and $g(x, y)$ are integrable with respect to x at each $y \in Y$ on every closed interval $[a, b] \subset[a, \omega[$.

A sufficient condition for uniform convergence of the integral

$$
\int_{a}^{\omega}(f \cdot g) \mathrm{d} x
$$

on the set Y is that one of the following two pairs of conditions holds:
1-1) either there exists a constant $M \in \mathbb{R}$ such that

$$
\left|\int_{a}^{b} f(x, y) \mathrm{d} x\right|<M
$$

for any $b \in[a, \omega[$ and any $y \in Y$ and

1-2) for each $y \in Y$ the function $g(x, y)$ is monotonic with respect to x on the interval $[a, \omega[$ and $g(x, y) \rightrightarrows 0$ on Y as $x \rightarrow \omega, x \in[a, \omega[$, or

2-1) the integral

$$
\int_{a}^{\omega} f(x, y) \mathrm{d} x
$$

converges uniformly on the set Y and
2-2) for each $y \in Y$ the function $g(x, y)$ is monotonic with respect to x on the interval $[a, \omega[$ and there exists a constant $M \in \mathbb{R}$ such that

$$
|g(x, y)|<M
$$

for every $x \in[a, \omega[$ and every $y \in Y$.

Applying the second mean-value theorem for the integral, we have

$$
\int_{b_{1}}^{b_{2}}(f \cdot g)(x, y) \mathrm{d} x=g\left(b_{1}, y\right) \int_{b_{1}}^{\xi} f(x, y) \mathrm{d} x+g\left(b_{2}, y\right) \int_{\xi}^{b_{2}} f(x, y) \mathrm{d} x
$$

Example 10. The integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} e^{-x y} \mathrm{~d} x
$$

converges uniformly on the set $\{y \in \mathbb{R} \mid y \geq 0\}$.
Example 11. The integral

$$
\int_{0}^{\infty} \frac{\sin x y}{x} \mathrm{~d} x
$$

converges uniformly on the set $\left\{y \in \mathbb{R} \mid y \geq y_{0}>0\right\}$ and not uniformly convergence on the set $\{y \in \mathbb{R} \mid y>0\}$

Example 12. The integrali $\int_{0}^{+\infty} \frac{\cos x^{2}}{x^{p}} \mathrm{~d} x$ converges uniformly on each $p \in$ $[\alpha, \beta] \subset(-1,1)$.

3 Limiting Passage under the Sign of an Improper Integral and Continuity of an Improper Integral Depending on a Parameter

Proposition 9. Let $f(x, y)$ be a family of functions depending on a parameter $y \in Y$ that are integrable, possibly in the improper sense, on the interval $a \leq x \leq$ ω, and let \mathcal{B}_{Y} be a base in Y.

If
a) for every $b \in[a, \omega[$

$$
f(x, y) \rightrightarrows \varphi(x) \text { on }[a, b] \text { over the base } \mathcal{B}_{Y},
$$

b) the integral $\int_{a}^{\omega} f(x, y) \mathrm{d} x$ converges uniformly on Y, then the limit function φ is improperly integrable on $[a, \omega[$ and the following equality holds:

$$
\lim _{\mathcal{B}_{Y}} \int_{a}^{\omega} f(x, y) \mathrm{d} x=\int_{a}^{\omega} \varphi \mathrm{d} x .
$$

Proposition 10. If
a) the function $f(x, y)$ is continuous on the set
$\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x<\omega, c \leq y \leq d\right\}$ and
b) the integral $F(y)=\int_{a}^{\omega} f(x, y) \mathrm{d} x$ converges uniformly on $[c, d]$,
then the function $F(y)$ is continuous on $[c, d]$.
Proposition 11. Suppose $f(x, y)$ is continuous on $[a,+\infty) \times[c, d]$, and the integral $\int_{a}^{\infty} f(x, y) \mathrm{d} x$ converges uniformly on $[c, d]$, then we have

$$
\int_{c}^{d} \mathrm{~d} y \int_{a}^{+\infty} f(x, y) \mathrm{d} x=\int_{a}^{+\infty} \mathrm{d} x \int_{c}^{d} f(x, y) \mathrm{d} y
$$

Proposition 12. Suppose $f(x, y), f_{y}(x, y)$ are continuous on $[a,+\infty) \times[c, d]$, for each $y \in[c, d]$ the integral $\int_{a}^{+\infty} f(x, y) \mathrm{d} x$ converges. Furthermore the integral
$\int_{a}^{+\infty} f_{y}(x, y) \mathrm{d} x$ is uniformly converges. Then we have

$$
\frac{d}{d y} \int_{a}^{+\infty} f(x, y) \mathrm{d} x=\int_{a}^{+\infty} \frac{\partial}{\partial y} f(x, y) \mathrm{d} x
$$

4 The Eulerian Integrals

In this section and the next we shall illustrate the application of the theory developed above to some specific integrals of importance in analysis that depend on a parameter.

Following Legendre, we define the Eulerian integrals of first and second kinds respectively as the two special functions that follow:

$$
\begin{gather*}
B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \mathrm{~d} x \tag{8}\\
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x \tag{9}
\end{gather*}
$$

The first of these is called the beta function and the second the gamma function.

4.1 The Beta Function

a. Domain of Definition A necessary and sufficient condition for the convergence of the integral of the beta function at the lower limit is that $\alpha>0$. Similarly, convergence at 1 occurs if and only if $\beta>0$. Thus the beta function is defined when both of the following conditions hold simultaneously:

$$
\alpha>0 \text { and } \beta>0
$$

b. Symmetry We can verify that:

$$
B(\alpha, \beta)=B(\beta, \alpha)
$$

c. The Reduction Formula If $\alpha>1$, the following equality holds:

$$
B(\alpha, \beta)=\frac{\alpha-1}{\alpha+\beta-1} B(\alpha-1, \beta)
$$

We can now write the reduction form:

$$
B(\alpha, \beta)=\frac{\alpha-1}{\alpha+\beta-1} B(\alpha, \beta-1)
$$

It can be seen immediately from the definition of the beta function that $B(\alpha, 1)=\frac{1}{\alpha}$, and so for $n \in \mathbb{N}$ we obtain

$$
\begin{align*}
B(\alpha, n) & =\frac{n-1}{\alpha+n-1} \cdot \frac{n-2}{\alpha+n-2} \cdots \frac{n-(n-1)}{\alpha+n-(n-1)} B(\alpha, 1) \\
& =\frac{(n-1)!}{\alpha(\alpha+1) \cdots(\alpha+n-1)} . \tag{10}
\end{align*}
$$

In particular, for $m, n \in \mathbb{N}$

$$
\begin{equation*}
B(m, n)=\frac{(m-1)!(n-1)!}{(m+n-1)!} \tag{11}
\end{equation*}
$$

d. Other forms of Representation of the Beta Function (1) One form for

 the beta function is$$
\begin{gathered}
B(\alpha, \beta)=2 \int_{0}^{\frac{\pi}{2}} \cos ^{2 p-1} \phi \sin ^{2 q-1} \phi \mathrm{~d} \phi \\
B\left(\frac{1}{2}, \frac{1}{2}\right)=\pi
\end{gathered}
$$

(2) The other form for the beta function is

$$
B(\alpha, \beta)=\int_{0}^{+\infty} \frac{t^{\beta-1}}{(1+t)^{\alpha+\beta}} \mathrm{d} t
$$

5 The Gamma Function

a. Domain of the Definition The Gamma Function is:

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x
$$

It can be seen from the definition that the integral defining the gamma function converges at zero only for $\alpha>0$, while it converges at infinity for all values of $\alpha \in \mathbb{R}$, due to the presence of the rapidly decreasing factor e^{-x}. Thus the gamma function is defined for $\alpha>0$.
b. Smoothness and the Formula for the Derivatives The gamma function is infinitely differentiable, and

$$
\begin{equation*}
\Gamma^{(n)}(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} \ln ^{n} x e^{-x} \mathrm{~d} x \tag{12}
\end{equation*}
$$

c. The Reduction Formula The relation

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha)
$$

holds. It is known as the reduction formula for the gamma function.
Since $\Gamma(1)=1$, we conclude that for $n \in \mathbb{N}$

$$
\Gamma(n+1)=n!
$$

Thus the gamma function turns out to be closely connected with the numbertheoretic function n !.
d. The Euler-Gauss Formula This is usually given to the following equality:

$$
\begin{equation*}
\Gamma(\alpha)=\lim _{n \rightarrow \infty} n^{\alpha} \frac{(n-1)!}{\alpha(\alpha+1) \cdots(\alpha+n-1)} \tag{13}
\end{equation*}
$$

e. The Complement Formula For $0<\alpha<1$ the values α and $1-\alpha$ of the argument of the gamma function are mutually complementary, so that the
equality

$$
\begin{equation*}
\Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi \alpha}(0<\alpha<1) \tag{14}
\end{equation*}
$$

It follows in particular from EQ 14 that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

We observe that

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{+\infty} x^{-\frac{1}{2}} e^{-x} \mathrm{~d} x=2 \int_{0}^{+\infty} e^{-u^{2}} \mathrm{~d} u=\sqrt{\pi}
$$

f. Connection Between the Beta and Gamma Function The connection between the beta and gamma function is

$$
\begin{equation*}
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \tag{15}
\end{equation*}
$$

Example 13. Find the result of

$$
I=\int_{0}^{\frac{\pi}{2}} \sin ^{6} x \cos ^{4} x \mathrm{~d} x
$$

Example 14. Find the result of

$$
\int_{0}^{1} x^{8} \sqrt{1-x^{3}} \mathrm{~d} x
$$

Example 15. suppose $\alpha>-1$, find the results of the following integrals

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{\alpha} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{\alpha} x \mathrm{~d} x
$$

Furthermore, find the volume of the n-dimensional sphere of the form

$$
B_{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq R^{2}\right\}
$$

[^0]: *Email: wuguoning@163.com

