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1 Proper Integrals Depending on a Parameter

1.1 The Concept of an Integral Depending on a Parameter

An integral depending on a parameter is a function of the form

F(t) = : f(z,t)dt, (1)

where ¢ plays the role of a parameter ranging over a set T', and to each valuet € T
there corresponding a set F; and a function ¢;(x) = f(x,t) that is integrable over
E} in the proper or improper sense. The nature of the set 7" may be quite varied,

but of course the most important cases occurs when 7T is a subset of R, C, R™, C".

If the integral (Eq. 1) is a proper integral for each value of the parameter
t € T, we say that the function in Eq. 1 is a proper integral depending on a

parameter.

But if the integral in Eq. 1 exists only as an improper integral for some or
all of the value of ¢t € T, we usually call F' an improper integral depending on a

parameter.
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1.2 Continuity of an Integral Depending on a Parameter

Proposition 1. Let P = {(z,y) € R*|la <z < b,c <y < d} be a rectangle on the
plane R?. If the function f : P — R is continuous, that is, if f € C(P,R), then

the function
b
Fly) = [ flo)ds )
is continuous at every point y € [c, d].

Example 1. Find the limit

) ! dx
lim —
a=0 Jo 1+ x%cosax

Proposition 2. Suppose f(x,y) € C ([a,b] X [c,d]), then

/cd dy/abf(x,y)dx:/ab dm/cdf(x,y)dy,

Example 2. Find the value

1.6 ,.a
I:/Jj xdx,for b>a>0
0

Inz

1.3 Differentiation of an Integral Depending on a Param-

eter

Proposition 3. If the function f : P — R is continuous and has a continuous par-
tial derivative with respect toy on the rectangle P = {(x,y) € R*la < x < b,c <y < d},
then the integral of Eq. 2 belongs to CM ([c,d],R), and

b
F'(y) = / g—g(x,y) dz.

Example 3. The complete elliptic integrals

3 _ 3 de
E(k :/ \/1—k2sin? odp, K(k :/
(k) 0 o K(F) 0 \/1—k2sin®¢

as functions of the parameter k,0 < k < 1, called the modulus of the corresponding




elliptic integral, are connected by the relations

dE E-K dK  E K

dk — k dk KA -k kK
Proposition 4. Suppose the function f : P — R is continuous and has a continu-
ous partial derivative % on the rectangle P = {(z,y) € R*la <z < b,c <y < d},
further suppose a(y), B(y) are continuously differentiable functions on [c,d] whose

values lie in [a,b] for every y € [c,d]. Then the integral

is defined for every y € [c,d] and belongs to CV ([e,d)) , and the following formula
holds;

B(y) of

Fi(y) = F(B) ) B) — Flaly)y) - o'(y) + / gy

Example 4. Let

Ro) = oty || @0 o

(n—1
where n € N and f is a function that is continuous on the interval of integration.

Let us verify that F)'(z) = f(z).

1.4 Integration of an Integral Depending on a Parameter

Proposition 5. If the function f : P — R is continuous in the rectangle P =
{(x,y) € R?la <z < bandc <y < d} , then the integral Eq. 2 is integrable over
the closed interval [c,d] and the following equality holds:

/cd/abf(x,y)drcdyz/ab/cdf(x,y)dydx (3)



2 Improper Integrals Depending on a Parameter

2.1 Uniform Convergence of an Improper Integral With

Respect to a Parameter

a. Basic Definition and Examples Suppose that the improper integral

Fy) = [ ) do ()

over the interval [a,w] converges for each value y € Y. For definiteness we shall
assume that the integral Eq. 4 has only one singularity and that it involves the up-
per limit of the integration (that is, either w = 400 or the function f is unbounded

as a function of z in a neighbourhood of w.)

Definition 1. We say that the improper integral Eq. 4 depending on the parameter
y € Y converges uniformly on the set E C Y if for every e > 0 there exists a

neighborhood Ul ,((w) of w in the set [a,w] such that the estimate

/ " oy da

for the remainder of the integral Eq.4 holds for everyb € Ul o(w) and everyy € E.

<e (5)

If we introduce the notation

b
Fy(y) = / f(x,y)de (6)

for a proper integral approximating the improper integral of Eq.4, the basic defini-
tion of this section can be restated as in a different form equivalent to the previous
one: uniform convergence of the integral of Eq. 4 on the set £ C Y by definition

means that

Fy(y) = F(y) on E as b — w,b € [a,w| (7)

/+oo d(L’
o w2ty

converges uniformly on the entire set R of values of the parameter y € R.

Example 5. The integral



Example 6. The integral

“+00
/ e Ydx
0

converges only wheny > 0. Moreover it converges uniformly on every set {y € Rly > yo > 0} .

Example 7. Let us show that each of the integrals

400
(b(l') — / l,ayoc-f-ﬁ-f-le—(l—&-m)y dy
0

+0o0
F(y) _ / xayaJrﬁJrlef(lJr:v)y dx
0

in which «, B are fized positive numbers, converges uniformly on the set of non-

negative values of the parameter.

b. The Cauchy Criterion for Uniform Convergence of an Integral

Proposition 6. Cauchy Criterion. A necessary and sufficient condition for
the improper integral of Eq. 4 depending on parametery € Y to converge uniformly
on a set B CY is that for every e > 0 there exist a neighborhood Uy, | of the point

w such that
b

f(z,y)

<€

b1

Jor every by, by € Uy and every y € E.

Corollary 1. If the function f in the integral of Eq. 4 is continuous on the set
[a,w[x[c,d] and the integral of Eq. 4 converges for every y €|e,d[ but diverges for
y =c ory =d, then it converges non-uniformly on the interval |c,d| and also on

any set E Cle,d[ whose closure contains the point of divergence.

+o00o )
/ e dx
0

converges for t > 0 and diverges at t = 0, hence it demonstrably converges non-

Example 8. The integral

uniformly on every set of positive numbers having 0 as a limit point.

c. Sufficient Conditions for Uniform Convergence of an Improper Inte-

gral Depending on a Parameter



Proposition 7. The Weierstrass test. Suppose the functions f(z,y) and g(z,y)
are integrable with respect to x on every closed interval [a,b] C [a,w] for each value

ofyey.

If the inequality |f(x,y)| < g(x,y) holds for each value of y € Y and every

/awg(fr,y) dz

converges uniformly on Y, then the integral

x € [a,w[ and the integral

/wa(%y)dx

converges absolutely for each y € Y and uniformly on Y.

The most frequently encountered case of Proposition 2 occurs when the func-
tion ¢ is independent of the parameter y. It is this case in which Proposition 2 is

usually called the Weierstrass M-test for uniform convergence of an integral.

> cosax
——dz
/g 14 22

converges uniformly on the whole set R of the parameter «, since ‘

Example 9. The integral

Ccos ax 1
1+x2 } S 1+x27

. o
and the integral fo ljljcg converges.

Proposition 8. (Abel-Dirichlet test.) Assume that the function f(x,y) and
g(z,y) are integrable with respect to x at each y € Y on every closed interval

[a,b] C [a,w].

A sufficient condition for uniform convergence of the integral

JRCGE

on the set'Y is that one of the following two pairs of conditions holds:

1-1) either there exists a constant M € R such that

/abf(w,y)dfr

for any b € [a,w[ and any y €Y and

<M




1-2) for each y € Y the function g(x,y) is monotonic with respect to x on the

interval [a,w] and g(x,y) 20 onY asz — w, x € [a,w|, or

/:f(af,y)daﬁ

converges uniformly on the set'Y and

2-1) the integral

2-2) for each y € Y the function g(x,y) is monotonic with respect to x on the

interval [a,w] and there exists a constant M € R such that
l9(z,y)| < M
for every x € [a,w[ and everyy € Y.

Applying the second mean-value theorem for the integral, we have
ba

bo 3
/ (f-9)(x,y)de =g(bi,y) [ flz,y)dz+g(ba,y) [ flz,y)dz

b1 b1 3

o -
sinz _
e Wdz
0 T

converges uniformly on the set {y € Rly > 0}.

®sinx
/ Y dx
0 T

converges uniformly on the set {y € Rly > yo > 0} and not uniformly convergence

on the set {y € Rly > 0}

Example 10. The integral

Example 11. The integral

cos 2

+oo
Example 12. The integrali / dx converges uniformly on each p €
0

la, B] C (—1,1).

xP



3 Limiting Passage under the Sign of an Im-
proper Integral and Continuity of an Improper

Integral Depending on a Parameter

Proposition 9. Let f(x,y) be a family of functions depending on a parameter
y € Y that are integrable, possibly in the improper sense, on the interval a < x <

w, and let By be a base in'Y .

If

a) for every b € [a,w|

flz,y) = p(z) on |a,b] over the base By,

w

b) the z'ntegml/ f(x,y) dx converges uniformly on'Y , then the limit function pis

improperly z'ntegamble on la,w[ and the following equality holds:

lim/ f(x,y)dx:/ pdz.
By Jq a

Proposition 10. If
a) the function f(z,y) is continuous on the set
{(z,y) eR*la <z <w,c<y<d} and
b) the integral F(y) = faw f(z,y) dz converges uniformly on |c,d],

then the function F(y) is continuous on [c,d].

Proposition 11. Suppose f(x,y) is continuous on |a, +00) X [c, d], and the integral

[ f(z,y) dz converges uniformly on [c,d], then we have

/Cd dy/:oof(w)dx:/:w dx/cdf(x,y)dy

Proposition 12. Suppose f(z,y), f,(z,y) are continuous on [a,+00) X [c,d], for
each y € lc,d] the integral f;roo f(x,y)dx converges. Furthermore the integral



f:oo fy(x,y) dx is uniformly converges. Then we have

d [+ oo g
@ . f(may)dx:/a a_yf(way)dx

4 The Eulerian Integrals

In this section and the next we shall illustrate the application of the theory
developed above to some specific integrals of importance in analysis that depend

on a parameter.

Following Legendre, we define the Eulerian integrals of first and second kinds

respectively as the two special functions that follow:

B(a, ) = /0 221 —2)’tde (8)

D(a) = /0 T et gy, 9)

The first of these is called the beta function and the second the gamma

function.

4.1 The Beta Function

a. Domain of Definition A necessary and sufficient condition for the conver-
gence of the integral of the beta function at the lower limit is that a > 0. Similarly,
convergence at 1 occurs if and only if § > 0. Thus the beta function is defined

when both of the following conditions hold simultaneously:

a>0and >0

b. Symmetry We can verify that:

B(a, B) = B(f, @)



c. The Reduction Formula If o > 1, the following equality holds:

a—1

B =—— Bla—-1
(@.8) = 55— Bla-15)
We can now write the reduction form:
B(a, 8) = ——2_B(a, 8- 1)
9 - a + 6 . 1 9

It can be seen immediately from the definition of the beta function that

B(a,1) = 1, and so for n € N we obtain

1 9 —(n—1
Bla,n) = — N Lm0 g
a+n—1 a+n—-2 a+n—(n—-1)
(10)
B (n—1)!
Calad1)-(a+n—1)
In particular, for m,n € N
(m—1)!(n—1)!
B = 11
(m.n) = e =D (11)

d. Other forms of Representation of the Beta Function (1) One form for
the beta function is

us

B(a, 8) =2 /2 cosP L psin® ! pdop
0

11
Bl=-,-|=nm
(32)

(2) The other form for the beta function is

+00 161
B0 = [ e

10



5 The Gamma Function
a. Domain of the Definition The Gamma Function is:

+o00
[Na) = / e dw
0

It can be seen from the definition that the integral defining the gamma function
converges at zero only for v > 0, while it converges at infinity for all values of
a € R, due to the presence of the rapidly decreasing factor e™*. Thus the gamma

function is defined for o > 0.

b. Smoothness and the Formula for the Derivatives The gamma function

is infinitely differentiable, and

+o0
r®(a) = / 2 1 In" xe " dz (12)
0

c. The Reduction Formula The relation
Na+1) =al(a)

holds. It is known as the reduction formula for the gamma function.

Since I'(1) = 1, we conclude that for n € N
Fn+1)=n!

Thus the gamma function turns out to be closely connected with the number-

theoretic function n!.

d. The Euler-Gauss Formula This is usually given to the following equality:

o (n—1)!
F(&)—Jl_}f{)lon ala+1)---(a+n—1)

(13)

e. The Complement Formula For 0 < a < 1 the values a and 1 — « of

the argument of the gamma function are mutually complementary, so that the

11



equality

P(@)D(1 —a) = 0<a<1) (14)

sin T

It follows in particular from EQ 14 that

We observe that

1 too too
r (—) = / r 2 Ydx = 2/ e du=+1
2 0 0

f. Connection Between the Beta and Gamma Function The connection

between the beta and gamma function is
(15)
Example 13. Find the result of
H 4
I:/ sin® x cos* z dz
0
Example 14. Find the result of
1
/ °V1 — 23 dx
0
Example 15. suppose a > —1, find the results of the following integrals
2 2
/ sin® xdr = / cos® xdx
0 0
Furthermore, find the volume of the n-dimensional sphere of the form

Bn:{(xlng,"' 7xn)|x%+$§++miSR2}
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