Integrals Depending on a Parameter

Guoning Wu*

China University of Petroleum-Beijing

2017.9

1 Proper Integrals Depending on a Parameter

1.1 The Concept of an Integral Depending on a Parameter

An integral depending on a parameter is a function of the form

$$F(t) = \int_{E_t} f(x,t) \,\mathrm{d}t,\tag{1}$$

where t plays the role of a parameter ranging over a set T, and to each value $t \in T$ there corresponding a set E_t and a function $\varphi_t(x) = f(x, t)$ that is integrable over E_t in the proper or improper sense. The nature of the set T may be quite varied, but of course the most important cases occurs when T is a subset of $\mathbb{R}, \mathbb{C}, \mathbb{R}^n, \mathbb{C}^n$.

If the integral (Eq. 1) is a proper integral for each value of the parameter $t \in T$, we say that the function in Eq. 1 is a proper integral depending on a parameter.

But if the integral in Eq. 1 exists only as an improper integral for some or all of the value of $t \in T$, we usually call F an improper integral depending on a parameter.

^{*}Email: wuguoning@163.com

1.2 Continuity of an Integral Depending on a Parameter

Proposition 1. Let $P = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$ be a rectangle on the plane \mathbb{R}^2 . If the function $f : P \to \mathbb{R}$ is continuous, that is, if $f \in C(P, \mathbb{R})$, then the function

$$F(y) = \int_{a}^{b} f(x, y) \,\mathrm{d}x \tag{2}$$

is continuous at every point $y \in [c, d]$.

Example 1. Find the limit

$$\lim_{a \to 0} \int_0^1 \frac{dx}{1 + x^2 \cos ax}$$

Proposition 2. Suppose $f(x, y) \in C([a, b] \times [c, d])$, then

$$\int_{c}^{d} \mathrm{d}y \int_{a}^{b} f(x, y) \, \mathrm{d}x = \int_{a}^{b} \mathrm{d}x \int_{c}^{d} f(x, y) \, \mathrm{d}y$$

Example 2. Find the value

$$I = \int_0^1 \frac{x^b - x^a}{\ln x} \, \mathrm{d}x, for \quad b > a > 0$$

1.3 Differentiation of an Integral Depending on a Parameter

Proposition 3. If the function $f : P \to \mathbb{R}$ is continuous and has a continuous partial derivative with respect to y on the rectangle $P = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$, then the integral of Eq. 2 belongs to $C^{(1)}([c, d], \mathbb{R})$, and

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) \,\mathrm{d}x.$$

Example 3. The complete elliptic integrals

$$E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \varphi} \, \mathrm{d}\varphi, \quad K(k) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

as functions of the parameter k, 0 < k < 1, called the modulus of the corresponding

elliptic integral, are connected by the relations

$$\frac{\mathrm{d}E}{\mathrm{d}k} = \frac{E-K}{k}, \frac{\mathrm{d}K}{\mathrm{d}k} = \frac{E}{k(1-k^2)} - \frac{K}{k}.$$

Proposition 4. Suppose the function $f : P \to \mathbb{R}$ is continuous and has a continuous partial derivative $\frac{\partial f}{\partial y}$ on the rectangle $P = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$, further suppose $\alpha(y), \beta(y)$ are continuously differentiable functions on [c, d] whose values lie in [a, b] for every $y \in [c, d]$. Then the integral

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) \, \mathrm{d}x$$

is defined for every $y \in [c,d]$ and belongs to $C^{(1)}([c,d])$, and the following formula holds;

$$F'(y) = f(\beta(y), y) \cdot \beta'(y) - f(\alpha(y), y) \cdot \alpha'(y) + \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x, y) \, \mathrm{d}x.$$

Example 4. Let

$$F_n(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t) \, \mathrm{d}t,$$

where $n \in N$ and f is a function that is continuous on the interval of integration. Let us verify that $F_n^n(x) = f(x)$.

1.4 Integration of an Integral Depending on a Parameter

Proposition 5. If the function $f : P \to \mathbb{R}$ is continuous in the rectangle $P = \{(x, y) \in \mathbb{R}^2 | a \le x \le bandc \le y \le d\}$, then the integral Eq. 2 is integrable over the closed interval [c, d] and the following equality holds:

$$\int_{c}^{d} \int_{a}^{b} f(x,y) \,\mathrm{d}x \,\mathrm{d}y = \int_{a}^{b} \int_{c}^{d} f(x,y) \,\mathrm{d}y \,\mathrm{d}x \tag{3}$$

2 Improper Integrals Depending on a Parameter

2.1 Uniform Convergence of an Improper Integral With Respect to a Parameter

a. Basic Definition and Examples Suppose that the improper integral

$$F(y) = \int_{a}^{\omega} f(x, y) \,\mathrm{d}x \tag{4}$$

over the interval $[a, \omega]$ converges for each value $y \in Y$. For definiteness we shall assume that the integral Eq. 4 has only one singularity and that it involves the upper limit of the integration (that is, either $\omega = +\infty$ or the function f is unbounded as a function of x in a neighbourhood of ω .)

Definition 1. We say that the improper integral Eq. 4 depending on the parameter $y \in Y$ converges uniformly on the set $E \subset Y$ if for every $\epsilon > 0$ there exists a neighborhood $U_{[a,\omega[}(\omega) \text{ of } \omega \text{ in the set } [a,\omega[\text{ such that the estimate}$

$$\left| \int_{b}^{\omega} f(x,y) \, \mathrm{d}x \right| < \epsilon \tag{5}$$

for the remainder of the integral Eq.4 holds for every $b \in U_{[a,\omega[}(\omega))$ and every $y \in E$.

If we introduce the notation

$$F_b(y) = \int_a^b f(x, y) \,\mathrm{d}x \tag{6}$$

for a proper integral approximating the improper integral of Eq.4, the basic definition of this section can be restated as in a different form equivalent to the previous one: uniform convergence of the integral of Eq. 4 on the set $E \subset Y$ by definition means that

$$F_b(y) \rightrightarrows F(y) \text{ on } E \text{ as } b \to \omega, b \in [a, \omega[$$
(7)

Example 5. The integral

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2 + y^2}$$

converges uniformly on the entire set \mathbb{R} of values of the parameter $y \in \mathbb{R}$.

Example 6. The integral

$$\int_0^{+\infty} e^{-xy} \,\mathrm{d}x$$

converges only when y > 0. Moreover it converges uniformly on every set $\{y \in \mathbb{R} | y \ge y_0 \ge 0\}$. Example 7. Let us show that each of the integrals

$$\Phi(x) = \int_0^{+\infty} x^{\alpha} y^{\alpha+\beta+1} e^{-(1+x)y} \, \mathrm{d}y$$
$$F(y) = \int_0^{+\infty} x^{\alpha} y^{\alpha+\beta+1} e^{-(1+x)y} \, \mathrm{d}x$$

in which α, β are fixed positive numbers, converges uniformly on the set of nonnegative values of the parameter.

b. The Cauchy Criterion for Uniform Convergence of an Integral

Proposition 6. Cauchy Criterion. A necessary and sufficient condition for the improper integral of Eq. 4 depending on parameter $y \in Y$ to converge uniformly on a set $E \subset Y$ is that for every $\epsilon > 0$ there exist a neighborhood $U_{[a,\omega[}$ of the point ω such that

$$\left|\int_{b_1}^{b_2} f(x,y)\right| < \epsilon$$

for every $b_1, b_2 \in U_{[a,\omega]}$ and every $y \in E$.

Corollary 1. If the function f in the integral of Eq. 4 is continuous on the set $[a, \omega[\times[c, d]] and$ the integral of Eq. 4 converges for every $y \in]c, d[$ but diverges for y = c or y = d, then it converges non-uniformly on the interval]c, d[and also on any set $E \subset]c, d[$ whose closure contains the point of divergence.

Example 8. The integral

$$\int_0^{+\infty} e^{-tx^2} \,\mathrm{d}x$$

converges for t > 0 and diverges at t = 0, hence it demonstrably converges nonuniformly on every set of positive numbers having 0 as a limit point.

c. Sufficient Conditions for Uniform Convergence of an Improper Integral Depending on a Parameter **Proposition 7.** The Weierstrass test. Suppose the functions f(x, y) and g(x, y) are integrable with respect to x on every closed interval $[a, b] \subset [a, \omega[$ for each value of $y \in Y$.

If the inequality $|f(x,y)| \leq g(x,y)$ holds for each value of $y \in Y$ and every $x \in [a, \omega[$ and the integral

$$\int_{a}^{\omega} g(x,y) \,\mathrm{d}x$$

converges uniformly on Y, then the integral

$$\int_0^\omega f(x,y)\,\mathrm{d} x$$

converges absolutely for each $y \in Y$ and uniformly on Y.

The most frequently encountered case of Proposition 2 occurs when the function g is independent of the parameter y. It is this case in which Proposition 2 is usually called the Weierstrass M-test for uniform convergence of an integral.

Example 9. The integral

$$\int_0^\infty \frac{\cos \alpha x}{1+x^2} \,\mathrm{d}x$$

converges uniformly on the whole set \mathbb{R} of the parameter α , since $\left|\frac{\cos \alpha x}{1+x^2}\right| \leq \frac{1}{1+x^2}$, and the integral $\int_0^\infty \frac{\mathrm{d}x}{1+x^2}$ converges.

Proposition 8. (Abel-Dirichlet test.) Assume that the function f(x, y) and g(x, y) are integrable with respect to x at each $y \in Y$ on every closed interval $[a, b] \subset [a, \omega]$.

A sufficient condition for uniform convergence of the integral

$$\int_{a}^{\omega} \left(f \cdot g\right) \, \mathrm{d}x$$

on the set Y is that one of the following two pairs of conditions holds:

1-1) either there exists a constant $M \in \mathbb{R}$ such that

$$\left| \int_{a}^{b} f(x, y) \, \mathrm{d}x \right| < M$$

for any $b \in [a, \omega[$ and any $y \in Y$ and

1-2) for each $y \in Y$ the function g(x, y) is monotonic with respect to x on the interval $[a, \omega[$ and $g(x, y) \rightrightarrows 0$ on Y as $x \rightarrow \omega, x \in [a, \omega[$, or

2-1) the integral

$$\int_{a}^{\omega} f(x,y) \, \mathrm{d}x$$

converges uniformly on the set Y and

2-2) for each $y \in Y$ the function g(x, y) is monotonic with respect to x on the interval $[a, \omega]$ and there exists a constant $M \in \mathbb{R}$ such that

$$|g(x,y)| < M$$

for every $x \in [a, \omega[$ and every $y \in Y$.

Applying the second mean-value theorem for the integral, we have

$$\int_{b_1}^{b_2} (f \cdot g)(x, y) \, \mathrm{d}x = g(b_1, y) \int_{b_1}^{\xi} f(x, y) \, \mathrm{d}x + g(b_2, y) \int_{\xi}^{b_2} f(x, y) \, \mathrm{d}x$$

Example 10. The integral

$$\int_0^\infty \frac{\sin x}{x} e^{-xy} \,\mathrm{d}x$$

converges uniformly on the set $\{y \in \mathbb{R} | y \ge 0\}$.

Example 11. The integral

$$\int_0^\infty \frac{\sin xy}{x} \,\mathrm{d}x$$

converges uniformly on the set $\{y \in \mathbb{R} | y \ge y_0 > 0\}$ and not uniformly convergence on the set $\{y \in \mathbb{R} | y > 0\}$

Example 12. The integrali $\int_0^{+\infty} \frac{\cos x^2}{x^p} dx$ converges uniformly on each $p \in [\alpha, \beta] \subset (-1, 1)$.

3 Limiting Passage under the Sign of an Improper Integral and Continuity of an Improper Integral Depending on a Parameter

Proposition 9. Let f(x, y) be a family of functions depending on a parameter $y \in Y$ that are integrable, possibly in the improper sense, on the interval $a \leq x \leq \omega$, and let \mathcal{B}_Y be a base in Y.

If

a) for every $b \in [a, \omega]$

 $f(x,y) \rightrightarrows \varphi(x)$ on [a,b] over the base \mathcal{B}_Y ,

b) the integral $\int_{a}^{\omega} f(x, y) dx$ converges uniformly on Y, then the limit function φ is improperly integrable on $[a, \omega]$ and the following equality holds:

$$\lim_{\mathcal{B}_Y} \int_a^\omega f(x,y) \, \mathrm{d}x = \int_a^\omega \varphi \, \mathrm{d}x.$$

Proposition 10. If

- a) the function f(x, y) is continuous on the set
- $\left\{ (x,y) \in \mathbb{R}^2 | a \le x < \omega, c \le y \le d \right\}$ and
- b) the integral $F(y) = \int_a^{\omega} f(x, y) \, dx$ converges uniformly on [c, d],

then the function F(y) is continuous on [c, d].

Proposition 11. Suppose f(x, y) is continuous on $[a, +\infty) \times [c, d]$, and the integral $\int_a^{\infty} f(x, y) dx$ converges uniformly on [c, d], then we have

$$\int_{c}^{d} \mathrm{d}y \int_{a}^{+\infty} f(x,y) \,\mathrm{d}x = \int_{a}^{+\infty} \mathrm{d}x \int_{c}^{d} f(x,y) \,\mathrm{d}y$$

Proposition 12. Suppose f(x, y), $f_y(x, y)$ are continuous on $[a, +\infty) \times [c, d]$, for each $y \in [c, d]$ the integral $\int_a^{+\infty} f(x, y) dx$ converges. Furthermore the integral $\int_{a}^{+\infty} f_y(x,y) \, \mathrm{d}x$ is uniformly converges. Then we have

$$\frac{d}{dy} \int_{a}^{+\infty} f(x, y) \, \mathrm{d}x = \int_{a}^{+\infty} \frac{\partial}{\partial y} f(x, y) \, \mathrm{d}x$$

4 The Eulerian Integrals

In this section and the next we shall illustrate the application of the theory developed above to some specific integrals of importance in analysis that depend on a parameter.

Following Legendre, we define the Eulerian integrals of first and second kinds respectively as the two special functions that follow:

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \,\mathrm{d}x$$
 (8)

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \,\mathrm{d}x. \tag{9}$$

The first of these is called the beta function and the second the gamma function.

4.1 The Beta Function

a. Domain of Definition A necessary and sufficient condition for the convergence of the integral of the beta function at the lower limit is that $\alpha > 0$. Similarly, convergence at 1 occurs if and only if $\beta > 0$. Thus the beta function is defined when both of the following conditions hold simultaneously:

$$\alpha > 0$$
 and $\beta > 0$

b. Symmetry We can verify that:

$$B(\alpha,\beta) = B(\beta,\alpha)$$

c. The Reduction Formula If $\alpha > 1$, the following equality holds:

$$B(\alpha,\beta) = \frac{\alpha-1}{\alpha+\beta-1}B(\alpha-1,\beta)$$

We can now write the reduction form:

$$B(\alpha,\beta) = \frac{\alpha-1}{\alpha+\beta-1}B(\alpha,\beta-1)$$

It can be seen immediately from the definition of the beta function that $B(\alpha, 1) = \frac{1}{\alpha}$, and so for $n \in \mathbb{N}$ we obtain

$$B(\alpha, n) = \frac{n-1}{\alpha+n-1} \cdot \frac{n-2}{\alpha+n-2} \cdots \frac{n-(n-1)}{\alpha+n-(n-1)} B(\alpha, 1)$$

=
$$\frac{(n-1)!}{\alpha(\alpha+1)\cdots(\alpha+n-1)}.$$
 (10)

In particular, for $m, n \in \mathbb{N}$

$$B(m,n) = \frac{(m-1)!(n-1)!}{(m+n-1)!}$$
(11)

d. Other forms of Representation of the Beta Function (1) One form for the beta function is

$$B(\alpha, \beta) = 2 \int_0^{\frac{\pi}{2}} \cos^{2p-1} \phi \sin^{2q-1} \phi \, \mathrm{d}\phi$$
$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \pi$$

(2) The other form for the beta function is

$$B(\alpha,\beta) = \int_0^{+\infty} \frac{t^{\beta-1}}{(1+t)^{\alpha+\beta}} \,\mathrm{d}t$$

5 The Gamma Function

a. Domain of the Definition The Gamma Function is:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \, \mathrm{d}x$$

It can be seen from the definition that the integral defining the gamma function converges at zero only for $\alpha > 0$, while it converges at infinity for all values of $\alpha \in \mathbb{R}$, due to the presence of the rapidly decreasing factor e^{-x} . Thus the gamma function is defined for $\alpha > 0$.

b. Smoothness and the Formula for the Derivatives The gamma function is infinitely differentiable, and

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha-1} \ln^n x e^{-x} \,\mathrm{d}x \tag{12}$$

c. The Reduction Formula The relation

 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

holds. It is known as the reduction formula for the gamma function.

Since $\Gamma(1) = 1$, we conclude that for $n \in \mathbb{N}$

$$\Gamma(n+1) = n!$$

Thus the gamma function turns out to be closely connected with the numbertheoretic function n!.

d. The Euler-Gauss Formula This is usually given to the following equality:

$$\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} \frac{(n-1)!}{\alpha(\alpha+1)\cdots(\alpha+n-1)}$$
(13)

e. The Complement Formula For $0 < \alpha < 1$ the values α and $1 - \alpha$ of the argument of the gamma function are mutually complementary, so that the

equality

$$\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha} (0 < \alpha < 1)$$
(14)

It follows in particular from EQ 14 that

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

We observe that

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} \, \mathrm{d}x = 2 \int_0^{+\infty} e^{-u^2} \, \mathrm{d}u = \sqrt{\pi}$$

f. Connection Between the Beta and Gamma Function The connection between the beta and gamma function is

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$
(15)

Example 13. Find the result of

$$I = \int_0^{\frac{\pi}{2}} \sin^6 x \cos^4 x \,\mathrm{d}x$$

Example 14. Find the result of

$$\int_0^1 x^8 \sqrt{1-x^3} \,\mathrm{d}x$$

Example 15. suppose $\alpha > -1$, find the results of the following integrals

$$\int_0^{\frac{\pi}{2}} \sin^\alpha x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^\alpha x \, \mathrm{d}x$$

Furthermore, find the volume of the n-dimensional sphere of the form

$$B_n = \left\{ (x_1, x_2, \cdots, x_n) | x_1^2 + x_2^2 + \cdots + x_n^2 \le R^2 \right\}$$