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SUMMARY

Time-frequency decomposition can capture the nonstation-
ary character of seismic data. In this paper, we propose
a new method of time-frequency analysis based on regular-
ized nonstationary autoregression coupled with Hilbert-Huang
spectrum (RNARHHS). RNARHHS is an empirical-mode-
decomposition like method but uses regularized nonstationary
autoregression to construct its intrinsic mode functions (IMFs).
Examples of synthetic and field seismic data show that this
method achieves high time-frequency resolution and can de-
tect low-frequency anomalies.

INTRODUCTION

Time-frequency (TF) analysis maps an 1D time signal into
2D time and frequency domain, which can capture the non-
stationary character of seismic data. TF analysis is a funda-
mental tool for seismic data analysis and geological interpre-
tation (Castagna et al., 2003; Reine et al., 2009; Chen et al.,
2014; Liu et al., 2016). Conventional TF methods, such as
short time Fourier transform (STFT) (Cohen, 1989), wavelet
transform (WT) (Mallat, 1989) and S transform (ST) (Stock-
well et al., 1996) are under the control of Gabor uncertainty
principle, which states that we cannot simutaneously locate
the exact time and frequency of a signal (Mallat, 2009). More-
over, STFT, WT and ST are using a windowing process, which
may bring smearing and leakage. Smearing means the widen-
ing of main lobe, and leakage corresponds to sidelobe leakage
(Tary et al., 2014). Therefore spurious frequencies are often
generated, which blur the real ones. In recent years, many
new methods were proposed such as matching pursuit (Mallat
and Zhang, 1993), basis pursuit (Chen et al., 1998), empir-
ical mode decomposition (EMD) (Huang et al., 1998; Chen
and Fomel, 2015). The EMD method decomposes a signal
into symmetric, narrow-band waveforms called intrinsic mode
functions (IMF) to compress artificial (or spurious) spectra
caused by sudden changes and therefore to improve the TF
resolution (Han and van der Baan, 2013). However, the EMD
method also suffers from mode mixing and splitting problems.
In order to solve the above problems, alternative methods were
developed based on EMD: ensemble empirical mode decom-
position (EEMD) (Wu and Huang, 2009), complete ensem-
ble empirical decomposition (CEEMD) (Torres et al., 2011).
However, these two methods, like the EMD, are still ”empir-
ical” because their sketchy mathematical justifications. The
synchrosqueezing wavelet transform (Daubechies et al., 2011)
captures the philosophy of EMD, but uses a different method
in constructing its components to provide a rigorous mathe-
matical framework.

Fomel (2013) proposed the nonstationary Prony method based

on regularized nonstationary autoregression (RNAR). RNAR
was previously applied to regularization (Liu and Fomel, 2011)
and denoising (Liu et al., 2012; Yang et al., 2015). The method
decomposes a signal into components with controlled smooth-
ness of amplitudes and frequencies like the EMD method, but
uses Prony method to extract the components instead. How-
ever, the components do not clearly correspond to frequencies,
and thus the method does not clearly define a real TF map but
a ”time-component” (TC) map.

In this paper, we propose to incorporate Hilbert-Huang trans-
form into Fomel’s method. By doing this we are able to obtain
a real TF map instead of a TC map of the input signal. Also,
the regularization process makes the components more con-
tinuous compared with EMD’s IMFs. In addition, the nonsta-
tionary regularization makes the method more localized, and
more suitable for nonsationary signal analysis. Therefore, this
method can improve the TF resolution of the input signal com-
pared with the map of the EMD. After we obtain the decom-
posed components, we use Hilbert-Huang tansform to com-
pute the spectrum, we additionally smooth the TF map to elim-
inate the irregularness coupled with the Hilbert-Huang spec-
trum.

Synthetic and real data tests confirm that the proposed method
has higher resolution than the EMD method, and can detecting
subtle low frequency anomalies.

THEORY

EMD
EMD is a data-driven method, and it is a powerful tool for non-
stationary signal analysis (Huang et al., 1998). This method
decomposes a signal into slowly varing time dependent ampli-
tudes and phases components called IMFs. The TF map of the
input signal is the computation of the instantaneous frequency
for its each IMF (Han and van der Baan, 2013). If s(t) is the
input signal, the EMD decomposition can be written as

s(t) =
K∑

k=1

sk(t) =
K∑

k=1

Ak(t)cos(φk(t)), (1)

where Ak(t) measures amplitude modulation, and φk(t) mea-
sures phase oscillation. Each sk(t) called IMF, which has a
narrow-band waveform and an instantaneous frequency that is
smooth and positive. The EMD is powerful, but its mathemat-
ical theory is sketchy.

Prony method
Prony method can extract damped complex exponential signals
(or sinusoids) from a given signal, by solving a set of linear
equations (Prony, 1795; Peter and Plonka, 2013; Mitrofanov
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and Priimenko, 2015). This allows for estimation of frequency,
amplitude and phase of a signal. Assume we want to slove the
problem

x[n] =
M∑

k=1

Ake(αk+ jωk)(n−1)∆t+ jφk , (2)

if we let hk = Ake jφk ,zk = e(αk+ jωk)∆t , we derive the concise
form

x[n] =
M∑

k=1

hkzn−1
k . (3)

The M equations of above (3) can be expressed in matrix form
as



z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

...
zM−1

1 zM−1
2 · · · zM−1

M







h1
h2
...

hM


=




x[1]
x[2]

...
x[M]


 .

(4)
The zk,k = 1,2, · · · ,M can be found by solving a polynomial
of the form below

F(z) =
M∏

k=1

(z− zk), (5)

the equation can be written in the form

F(z) = a0zM +a1zM−1 + · · ·+aM−1z+aM . (6)

The coefficients of the polynomial can be obtain by solving the
following equation

M∑

m=0

amx[n−m] = 0. (7)

If zk,k = 1,2, · · · ,M are obtained, then we can use equation (4)
to compute hk,k = 1,2, · · · ,M

Nonstationary Prony method
The equation (7) can be rewritten as

M∑

m=1

âmx[n−m] = x[n]. (8)

If the âms in equation (8) are time dependent, then we have

M∑

m=1

âm[n]x[n−m] = x[n], (9)

which is underdetermined. Therefore, we can apply shaping
regularization (Fomel, 2007, 2009) to regularize the problem,
and obtain

â = F−1d, (10)

where â is a vector composed of âm[n], the elements of vector
d are di[n] = S[x∗i [n]x[n]], where xi[n] = x[n− i], and S is the
shaping operator. The elements of matrix F are

Fi j[n] = σ2δi j +S[x∗i [n]x j[n]−σ2δi j], (11)

where σ is the regularization parameter.
The nonstationary Prony method (Fomel, 2013) can be sum-
marized as follows:

1. Using equation (10), we can obtain the time dependent
polynomial coefficients âm[n],m = 1,2, · · · ,M.

2. At each instant, write a polynomial of the form

F(z) = zM + â1[n]zM−1 + · · ·+ âM [n]. (12)

3. Find the roots ẑm[n],m = 1,2, ·,M of the above poly-
nomial. The instantaneous frequency of each different
component is derived from the following equation

fm[n] = ℜ
[

arg

(
ẑm[n]
2π∆t

)]
. (13)

4. From the instantaneous frequency, we compute the lo-
cal phase accroding to the following equation

Φm[n] = 2π
n∑

k=0

fm[k]∆t. (14)

5. Finally, solving the following equation by using the
regularized nonstationary regression method

x[n] =
M∑

m=1

Âm[n]e jΦm[n] =

M∑

m=1

cm[n]. (15)

These cm[n]s like the IMFs of EMD, are narrow-band
signals.

After we decompose the input signal into narrow-band com-
ponents, we can calculate the instantaneous frequency of each
component by using Hilbert-Huang transform. Therefore, we
can derive the TF representation of the input signal.

EXAMPLES

We use synthetic signals and real field data to test the proposed
method.

Synthetic signal
We first use a simple synthetic signal to test the proposed method.
Figure 1 is a synthetic signal from Hou and Shi (2013). Figure
2(a) shows the signal has three components. Figure 2(b) and
Figure 2(c) show components extracted respectively by EMD
and RNAR. From the figures, we see that RNAR method accu-
rately identifies the three components that the signal has. The
components derived by RNAR method are more continuous in
amplitudes and frequencies compared with those obtained by
the EMD method.

We use the proposed method to extract the TF map of the
above synthetic signal (Figure 1). Figure 3(a) is the TF map of
local time frequency method (LTFM) (Liu et al., 2011), Fig-
ure 3(b) is the TF map of the EMD method and Figure 3(c)
is the TF map of the proposed method. The TF map of the
EMD method has higher resolution than the TF map of LTFM.
However, the TF map of the EMD is discontinuous because
the Hilbert-Huang transform is highly susceptible to discon-
tinuities of the decomposed components. The TF map of the
proposed method is much better than the TF map of EMD, and
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the energies are concentrated in the instantaneous frequencies
locations of the input signal.

2D seismic data
The second application is a 2D field seismic data (Figure 4(a)).
Figure 4(b) is the 60 Hz slice of LTFM. Figure 5(a) and Fig-
ure 5(b) correspond to 30Hz and 60 Hz slices of the proposed
method for the input data. Figure 5(c) and Figure 5(d) corre-
spond to the smoothed 30Hz and 60Hz slices of the proposed
method for the input data. Here we use a 2D, 3-points length
triangle operator to smooth the TF map of the input signal.
From the above figures, we see that the proposed method has
higher resolutin than LTFM but with some discontinuities cou-
pled with Hilbert-Huang transform. The smoothing process
eliminates the discontinuities in some degree at the expense of
resolution decrease. From the figures, we also see that there
is a low frequency anomaly in the upper left part of the data
section, which may correspond to gas presentation.

Figure 1: Synthetic signal.

(a) (b)

(c)

Figure 2: (a) Components making the synthetic signal in Fig-
ure 1. (b) Components derived by EMD. (c) Components de-
rived by RNAR.

We then use another field data example to show the TF anal-
ysis performance using the proposed approach. The dataset is
shown in Figure 6. Figure 7 shows the full TF decomposition
result using the proposed approach. The main panel shows
a constant frequency slice. The panel on the right hand side
shows a TF map of 150th trace. It is obvious that each trace is
decomposed into three main oscillating components, each of
which has a smoothly variable instantaneous frequency. The

TF decomposition is of high-resolution, which facilitates a high-
resolution delineation of the subsurface properties including
structural and stratigraphic features. We selected three con-
stant frequency slices and show them in Figure 8. Because
of the high-resolution properties of the proposed approach, we
can see some interesting phenomena with respect to the fre-
quency components variations. For example, we can see a
strong absorption of high-frequency components around 0.5s
and 125th trace. The absorption layer is very thin and cannot
be observed from the original amplitude map. From the con-
stant frequency slices, we can see such an absorption layer is
just between two reflection layers, as can be see from 60 Hz
slide in Figure 8(c). This absorption layer might indicate a
thin-bed reservoir. Another very abnormal phenomenon is the
abnormal low-frequency contents around 1.75s and 125th trace
in Figure 8(b). If we correlate the anomaly with the original
amplitude profile, it may also indicate a potential reservoir.

CONCLUSION

We proposed to compute the TF map of the input signal based
on RNAR coupled with Hilbert-Huang spectrum (HHS); we
utilized triangular smoothness to compress the fluctuation of
the HHS. The proposed method is an EMD-like method but
with nonstationary Prony method to construct its components.
The components derived are with controlled smoothness of
amplitudes and frequencies with which we can obtain higher
resolution TF map compared with the EMD method. Potential
application include inversion, Q estimation, denoising, etc.
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(a)

(b)

(c)

Figure 3: (a) TF of LTFM. (b) TF of EMD. (c) TF of the pro-
posed method.
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(a) (b)

Figure 4: (a) 2D seismic data section. (b) 60Hz slice of LTFM.

(a) (b)

(c) (d)

Figure 5: (a) 30Hz slice of proposed method. (b) 60Hz slice
of proposed method. (c) Smoothed 30Hz slice of proposed
method. (d) Smoothed 60Hz slice of proposed method.

Figure 6: Post-stack field dataset.

Figure 7: Time-frequency decomposition result of the second
field data example.

(a)

(b)

(c)

Figure 8: (a) Smoothed 30Hz slice of proposed method. (b)
Smoothed 40Hz slice of proposed method. (c) Smoothed 60Hz
slice of proposed method.
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